98%
921
2 minutes
20
Osteoarthritis is a chronic disease that often affects the canine stifle joint. Due to their biomechanical function, the menisci in the canine stifle play an important role in osteoarthritis. They compensate for the incongruence in the joint and distribute and minimize compressive loads, protecting the hyaline articular cartilage from damage. Meniscal degeneration favors the development and progression of stifle joint osteoarthritis. Qualitative magnetic resonance imaging (MRI) is the current golden standard for detecting meniscal changes, but it has limitations in detecting early signs of meniscal degeneration. A quantitative MRI offers new options for detecting early structural changes. T2 mapping can especially visualize structural changes such as altered collagen structures and water content, as well as deviations in proteoglycan content. This study evaluated T2 mapping and performed a histological scoring of menisci in elderly dogs that had no or only low radiographic osteoarthritis grades. A total of 16 stifles from 8 older dogs of different sex and breed underwent ex vivo magnet resonance imaging, including a T2 mapping pulse sequence with multiple echoes. A histological analysis of corresponding menisci was performed using a modified scoring system. The mean T2 relaxation time was 18.2 ms and the mean histological score was 4.25. Descriptive statistics did not reveal a correlation between T2 relaxation time and histological score. Ex vivo T2 mapping of canine menisci did not demonstrate histological changes, suggesting that early meniscal degeneration can be present in the absence of radiological signs of osteoarthritis, including no significant changes in T2 relaxation time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053884 | PMC |
http://dx.doi.org/10.3390/vetsci10030182 | DOI Listing |
Org Biomol Chem
September 2025
Universidad de Córdoba, Grupo de Química Computacional, Facultad de Ciencias Básicas, Carrera 6, No. 77-305, Montería-Córdoba, Colombia.
This study explores the photochemical conversion of BN-Dewar benzene into BN-benzvalene derivatives, offering a strategic route to heteroatom-containing valence isomers with distinctive electronic properties. Using time-dependent density functional theory (TD-DFT) and electron localization function (ELF) analyses, the excited-state mechanism and associated structural rearrangements were elucidated. Vertical excitation to the S state was found to weaken the CC and B-N bonds while strengthening the N-Si bond in silyl-substituted derivatives, a key factor enabling efficient BN-benzvalene formation.
View Article and Find Full Text PDFJ Math Biol
September 2025
School of Mathematical Sciences and Institute of Natural Sciences, MOE-LSC, CMA-Shanghai, Shanghai Jiao Tong University, Shanghai, China.
It has been noticed that when the waiting time distribution exhibits a transition from an intermediate time power-law decay to a long-time exponential decay in the continuous time random walk model, a transition from anomalous diffusion to normal diffusion can be observed at the population level. However, the mechanism behind the transition of waiting time distribution is rarely studied. In this paper, we provide one possible mechanism to explain the origin of such a transition.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.
View Article and Find Full Text PDFNature
September 2025
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.
View Article and Find Full Text PDFJ Control Release
September 2025
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China; Dongguan Liaobu Hospital, Dongguan 523400, Guangdong, China. Electronic address:
Fluorine-19 magnetic resonance imaging (F MRI) offers distinct advantages, including background-free signal detection, quantitative analysis, and deep tissue penetration. However, its application is currently limited by challenges associated with existing F MRI contrast agents, such as short transverse relaxation times (T), limited imaging sensitivity, and suboptimal biocompatibility. To overcome these limitations, a glutathione (GSH)-responsive triblock copolymer (PB7), featuring self-immolative characteristics, has been developed.
View Article and Find Full Text PDF