Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
DNA-based nanostructures allow for complex self-assembly with nanometer precision through the specificity of Watson-Crick base pairing, but network behavior-directed control of the kinetic process is less studied. Here we show how the DNA reaction network (DRN), which has emerged as a reliable and programmable way to implement artificial network dynamics, can be built as the control center of programmable nanostructures, allowing spatiotemporal control over the dynamic behavior of DNA nanotubes. We chose a common network motif in biological control systems, the feed-forward loop, as the model network and demonstrated that dynamic behaviors, such as self-tuning control and multilayer hierarchical assembly, could be programmed by constructing an inhibition network and an excitation network, separately, in buffer solution and inside protocells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c12360 | DOI Listing |