Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Different types of therapy are currently being used to treat non-small cell lung cancer (NSCLC) depending on the stage of tumor and the presence of potentially druggable mutations. However, few biomarkers are available to guide clinicians in selecting the most effective therapy for all patients with various genetic backgrounds. To examine whether patients' mutation profiles are associated with the response to a specific treatment, we collected comprehensive clinical characteristics and sequencing data from 524 patients with stage III and IV NSCLC treated at Atrium Health Wake Forest Baptist. Overall survival based Cox-proportional hazard regression models were applied to identify mutations that were "beneficial" (HR < 1) or "detrimental" (HR > 1) for patients treated with chemotherapy (chemo), immune checkpoint inhibitor (ICI) and chemo+ICI combination therapy (Chemo+ICI) followed by the generation of mutation composite scores (MCS) for each treatment. We also found that MCS is highly treatment specific that MCS derived from one treatment group failed to predict the response in others. Receiver operating characteristics (ROC) analyses showed a superior predictive power of MCS compared to TMB and PD-L1 status for immune therapy-treated patients. Mutation interaction analysis also identified novel co-occurring and mutually exclusive mutations in each treatment group. Our work highlights how patients' sequencing data facilitates the clinical selection of optimized treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042886 | PMC |
http://dx.doi.org/10.1038/s41698-023-00373-0 | DOI Listing |