Supramolecular assemblies based on polymeric cyclodextrin nanosponges and a cationic porphyrin with antimicrobial photodynamic therapy action.

Int J Pharm

CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT Messina c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Within of the increasing requirement of alternative approaches to fight emerging infections, nano-photosensitisers (nanoPS) are currently designed with the aim to optimize the antimicrobial photodynamic (aPDT) efficacy. The utilize of less expensive nanocarriers prepared by simple and eco-friendly methodologies and commercial photosensitisers are highly desiderable. In this direction, here we propose a novel nanoassembly composed of water soluble anionic polyester β-CD nanosponges (β-CD-PYRO hereafter named βNS) and the cationic 5,10,15,20-tetrakis(1-methylpyridinium-4- yl)porphine (TMPyP). Nanoassemblies were prepared in ultrapure water by mixing PS and βNS, by exploiting their mutual electrostatic interaction, and characterized by various spectroscopic techniques such as UV/Vis, Steady-State and Time Resolved Fluorescence, Dynamic Light Scattering and ζ-potential. NanoPS produce appreciable amount of single oxygen similar to free porphyrin and a prolonged stability after 6 days of incubations in physiological conditions and following photoirradiation. Antimicrobial photodynamic action against fatal hospital-acquired infections such as P. aeruginosa and S. aureus was investigated by pointing out the ability of cationic porphyrin loaded- CD nanosponges to photo-kill bacterial cells at prolonged time of incubation and following irradiation (MBC = 3.75 µM, light dose = 54.82 J/cm).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.122883DOI Listing

Publication Analysis

Top Keywords

antimicrobial photodynamic
12
cationic porphyrin
8
supramolecular assemblies
4
assemblies based
4
based polymeric
4
polymeric cyclodextrin
4
cyclodextrin nanosponges
4
nanosponges cationic
4
porphyrin antimicrobial
4
photodynamic therapy
4

Similar Publications

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF

Light-activated antimicrobial polymers with citronellol-enhanced bacterial accumulation for on-demand disinfection.

J Mater Chem B

September 2025

School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.

Antibacterial photodynamic therapy offers a promising approach for combating both susceptible and multidrug-resistant pathogens. However, conventional photosensitizers have limitations in terms of poor binding specificity and weak penetration for pathogens. In this study, we developed synergistic photobactericidal polymers that integrate hydrophilic toluidine blue O (TBO) with the lipophilic penetration enhancer citronellol (CT).

View Article and Find Full Text PDF

Enzymatic and mechanical disruption before successive photodynamic therapy targets the extracellular matrix of Candida albicans.

Photodiagnosis Photodyn Ther

September 2025

Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Odontologia de Araraquara, Araraquara, SP, Brazil. Electronic address:

Objective: To evaluate whether pretreatment strategies targeting the extracellular matrix (ECM), such as DNase I and low-frequency ultrasound, enhance the efficacy of successive antimicrobial photodynamic therapy (aPDT) against Candida albicans biofilms and to assess the effects on biofilm components.

Methods: Forty-eight-hour C. albicans (ATCC 90028) biofilms were treated under four conditions: (I) aPDT [Photodithazine (PDZ) (25 mg/L) for 20 min + Light-Emitting Diode (LED) (660 nm, 18 J/cm²)], (II) DNase+aPDT [5 min with 20 U/mL DNase I before aPDT], (III) sonication+aPDT [7 W, 170-190 J before aPDT], (IV) Dn+So+aPDT.

View Article and Find Full Text PDF

Alternatives to the use of chemical antimicrobials to treat meat and poultry carcasses during processing and food processing environments are of interest to consumers globally. The influence of bacterial cell concentration, membrane permeabilizing agents, and effect on macromolecules of the photosensitizer curcumin (PSC) on Salmonella inactivation in a medium model and on chicken skin and the inactivation of Listeria monocytogenes biofilms on stainless steel were determined. The addition of 30 mg/mL CaCl or higher significantly reduced the level of Salmonella compared to PSC treatment alone in a liquid media system.

View Article and Find Full Text PDF

The problem of hospital-acquired infections arising from inadequate antimicrobial and antibiofilm performance in medical textiles is an increasingly urgent threat to public health. The dual strategy combining superhydrophobic surfaces with aPDT exhibits potent antibacterial efficacy and barely triggers the risk of antimicrobial resistance, but still encounters significant challenges, including intricate fabrication methods and narrow spectral absorption of single-photosensitizer (PS) systems. A superhydrophobic-photodynamic dual antimicrobial polyester fabric is developed herein for medical applications to address these challenges.

View Article and Find Full Text PDF