Quantum-coherence-free precision metrology by means of difference-signal amplification.

Sci Rep

Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, 300072, China.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The novel weak-value-amplification (WVA) scheme of precision metrology is deeply rooted in the quantum nature of destructive interference between the pre- and post-selection states. And, an alternative version, termed as joint WVA (JWVA), which employs the difference-signal from the post-selection accepted and rejected results, has been found possible to achieve even better sensitivity (two orders of magnitude higher) under some technical limitations (e.g. misalignment errors). In this work, after erasing the quantum coherence, we analyze the difference-signal amplification (DSA) technique, which serves as a classical counterpart of the JWVA, and show that similar amplification effect can be achieved. We obtain a simple expression for the amplified signal, carry out characterization of precision, and point out the optimal working regime. We also discuss how to implement the post-selection of a classical mixed state. The proposed classical DSA technique holds similar technical advantages of the JWVA and may find interesting applications in practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033826PMC
http://dx.doi.org/10.1038/s41598-023-31787-2DOI Listing

Publication Analysis

Top Keywords

precision metrology
8
difference-signal amplification
8
dsa technique
8
quantum-coherence-free precision
4
metrology difference-signal
4
amplification novel
4
novel weak-value-amplification
4
weak-value-amplification wva
4
wva scheme
4
scheme precision
4

Similar Publications

Ball Milling Approaches for Biomass-Derived Nanocarbon in Advanced Sustainable Applications.

Chem Rec

September 2025

Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.

The synthesis of biomass-derived nanocarbons via ball milling has emerged as an innovative, sustainable, and cost-effective strategy in the field of nanotechnology. This review comprehensively explores the principles, mechanisms, and process parameters that influence the production of high-quality nanocarbons from biomass using ball milling. This process efficiently transforms biomass residues into nanoscale carbon, including graphene, carbon nanotubes, and nanofibers, with tunable physicochemical properties tailored for advanced applications.

View Article and Find Full Text PDF

Purpose: This study aims to compare the occlusal trueness and precision of teeth manufactured using two modern digital milling processes.

Materials And Methods: A total of 38 complete dentures (CDs) were fabricated and analyzed. CDs in Group 1 (monolithic) (n = 19) were produced using a monolithic bicolor resin disk, whereas in Group 2 (oversize) (n = 19) were fabricated using the oversize process, which involves two separate resin disks of different colors.

View Article and Find Full Text PDF

In this work, we developed a vacuum-compatible long trace profiler (LTP) for in situ metrology of ultra-precise x-ray optics within synchrotron vacuum chambers. Although traditional LTPs operate ex situ under atmospheric pressure, earlier optical setups-such as that by Qian et al.-performed in situ distortion measurements by directing laser beams through vacuum viewports.

View Article and Find Full Text PDF

As one of the main pillars of quantum technologies, quantum metrology aims to improve measurement precision using techniques from quantum information. The two main strategies to achieve this are the preparation of nonclassical states and the design of optimized measurement observables. We discuss precision limits and optimal strategies in quantum metrology and sensing with a single mode of quantum continuous variables.

View Article and Find Full Text PDF

In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and spatial resolution. In this study, we developed a dual-sided standing surface acoustic wave (SSAW) device that simultaneously excites acoustic waves through two piezoelectric substrates positioned at the top and bottom of a microchannel.

View Article and Find Full Text PDF