Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biophysical and biochemical attributes of the extracellular matrix are major determinants of cell fate in homeostasis and disease. Ocular hypertension and glaucoma are diseases where the trabecular meshwork tissue responsible for aqueous humor egress becomes stiffer accompanied by changes in its matrisome in a segmental manner with regions of high or low flow. Prior studies demonstrate these alterations in the matrix are dynamic in response to age and pressure changes. The underlying reason for segmentation or differential response to pressure and stiffening are unknown. This is largely due to a lack of appropriate models ( or ) to study this phenomena. In this study, we characterize the biomechanical attributes, matrisome, and incidence of crosslinks in the matrix deposited by primary cells isolated from segmental flow regions and when treated with glucocorticosteroid. Data demonstrate that matrix deposited by cells from low flow regions are stiffer and exhibit a greater number of immature and mature crosslinks, and that these are exacerbated in the presence of steroid. We also show a differential response of high or low flow cells to steroid via changes observed in the matrix composition. We conclude that although a mechanistic basis for matrix stiffness was undetermined in this study, it is a viable tool to study cell-matrix interactions and further our understanding of trabecular meshwork pathobiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028995PMC
http://dx.doi.org/10.1101/2023.03.11.532242DOI Listing

Publication Analysis

Top Keywords

matrix deposited
12
trabecular meshwork
12
low flow
12
extracellular matrix
8
high low
8
differential response
8
flow regions
8
matrix
7
characterization extracellular
4
deposited segmental
4

Similar Publications

Chemically Lithiated Poly(vinylidene difluoride) with In Situ Generated LiF Nanofiller as Hybrid Artificial Layer for Stable Lithium Metal Anodes.

Small

September 2025

Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer  poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.

View Article and Find Full Text PDF

This study aimed to develop an acellular dermal matrix derived from tilapia skin and evaluate its potential as a bioscaffold for skin wound repair. Structural and compositional changes before and after decellularisation were assessed through histological staining, electron microscopy and immunological analysis. The matrix exhibited low immunogenicity, preserved extracellular matrix architecture and retained key bioactive components.

View Article and Find Full Text PDF

Histological preparation paraffin embedding is the gold standard method for evaluating tissue structure and composition, whether it is originated from biopsy or engineered . Quite often, deformation and shrinkage occur during the histological preparation, which are difficult to predict and qualify. The present study investigates the morphometric changes in bioprinted hydrogels composed of alginate and gelatine, common tissue engineering materials, focusing on three morphologies: full slabs, porous slabs, and porous cubes.

View Article and Find Full Text PDF

Cell and Hydrogel-Integrated Therapies for Intervertebral Disc Regeneration.

Adv Healthc Mater

September 2025

Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.

Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), significantly affecting on global disability and healthcare costs. Traditional treatments primarily focus on symptom management rather than addressing the underlying causes, such as the decline in nucleus pulposus (NP) cells and reduced extracellular matrix (ECM) synthesis. Cell therapy shows promise by replenishing NP cells, activating resident cells, and enhancing ECM deposition.

View Article and Find Full Text PDF

Fibrotic scarring remains a critic obstacle to axonal regeneration after spinal cord injury (SCI). Current strategies primarily concentrating on eliminating extracellular matrix (ECM) components neglect their dispensable roles in maintaining tissue integrity. Here, it is reported that the mechanical strength of an integrated hydrogel composed of hyaluronic acid-graft-dopamine and HRR peptide directs fibroblast migration, determining ECM deposition.

View Article and Find Full Text PDF