98%
921
2 minutes
20
Alternative splicing (AS) is a critical means by which plants respond to changes in the environment, but few splicing factors contributing to AS have been reported and functionally characterized in rice (Oryza sativa L.). Here, we explored the function and molecular mechanism of the spliceosome-associated protein OsFKBP20-1b during AS. We determined the AS landscape of wild-type and osfkbp20-1b knockout plants upon abscisic acid (ABA) treatment by transcriptome deep sequencing. To capture the dynamics of translating intron-containing mRNAs, we blocked transcription with cordycepin and performed polysome profiling. We also analyzed whether OsFKBP20-1b and the splicing factors OsSR34 and OsSR45 function together in AS using protoplast transfection assays. We show that OsFKBP20-1b interacts with OsSR34 and regulates its stability, suggesting a role as a chaperone-like protein in the spliceosome. OsFKBP20-1b facilitates the splicing of mRNAs with retained introns after ABA treatment; some of these mRNAs are translatable and encode functional transcriptional regulators of stress-responsive genes. In addition, interacting proteins, OsSR34 and OsSR45, regulate the splicing of the same retained introns as OsFKBP20-1b after ABA treatment. Our findings reveal that spliceosome-associated immunophilin functions in alternative RNA splicing in rice by positively regulating the splicing of retained introns to limit ABA response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.18892 | DOI Listing |
Recursive splice sites are rare motifs postulated to facilitate splicing across massive introns and shape isoform diversity, especially for long, brain-expressed genes. The necessity of this unique mechanism remains unsubstantiated, as does the role of recursive splicing (RS) in human disease. From analyses of rare copy number variants (CNVs) from almost one million individuals, we previously identified large, heterozygous deletions eliminating an RS site (RS1) in the first intron of that conferred substantial risk for attention deficit hyperactivity disorder (ADHD) and other neurobehavioral traits.
View Article and Find Full Text PDFDev Biol
September 2025
Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:
Thrombocytopenia-Absent Radius (TAR) syndrome is a rare congenital condition with reduced platelets, forelimb anomalies, and variable heart and kidney defects. TAR syndrome is caused by mutations in RBM8A/Y14, a component of the exon junction complex. How perturbing a general mRNA-processing factor causes the selective TAR Syndrome phenotypes remains unknown.
View Article and Find Full Text PDFMicrob Cell
August 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, N.L, Mexico.
Programmed cell death (PCD) in unicellular organisms is not well characterized. This study investigated the transcriptomic response of to G418-induced PCD, focusing on the role of alternative splicing (AS). RNA sequencing revealed extensive transcriptional changes, affecting approximately 70% of annotated genes over six hours of treatment.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA.
N6-methyladenosine (m6A) is the most prevalent internal mRNA modification, enriched in the CNS yet poorly characterized in glioma. Using long-read RNA sequencing, we mapped m6A in an glioma model following knockdown (KD) of the reader IGF2BP2, writer METTL3, and eraser ALKBH5, with naive glioma cells and astrocytes as controls. Glioma cells exhibited a two-fold reduction in global m6A, suggesting progressive loss from healthy to malignant states.
View Article and Find Full Text PDFbioRxiv
August 2025
The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Immunotherapy benefits only a subset of lung cancer patients, and the molecular determinants of variable outcomes remain unclear. Using long-read RNA-sequencing we mapped the landscape of alternative RNA splicing in human primary lung adenocarcinomas. We identified over 180,000 full-length mRNA isoforms, more than half of which were novel and many of which occurred in immune-related genes, particularly within the type I interferon response pathway.
View Article and Find Full Text PDF