98%
921
2 minutes
20
Understanding the actual work (i.e., "work-as-done") rather than theorized work (i.e., "work-as-imagined") during complex medical processes is critical for developing approaches that improve patient outcomes. Although process mining has been used to discover process models from medical activity logs, it often omits critical steps or produces cluttered and unreadable models. In this paper, we introduce a TraceAlignment-based ProcessDiscovery method called TAD Miner to build interpretable process models for complex medical processes. TAD Miner creates simple linear process models using a threshold metric that optimizes the consensus sequence to represent the backbone process, and then identifies both concurrent activities and uncommon-but-critical activities to represent the side branches. TAD Miner also identifies the locations of repeated activities, an essential feature for representing medical treatment steps. We conducted a study using activity logs of 308 pediatric trauma resuscitations to develop and evaluate TAD Miner. TAD Miner was used to discover process models for five resuscitation goals, including establishing intravenous (IV) access, administering non-invasive oxygenation, performing back assessment, administering blood transfusion, and performing intubation. We quantitively evaluated the process models with several complexity and accuracy metrics, and performed qualitative evaluation with four medical experts to assess the accuracy and interpretability of the discovered models. Through these evaluations, we compared the performance of our method to that of two state-of-the-art process discovery algorithms: Inductive Miner and Split Miner. The process models discovered by TAD Miner had lower complexity and better interpretability than the state-of-the-art methods, and the fitness and precision of the models were comparable. We used the TAD process models to identify (1) the errors and (2)the best locations for the tentative steps in knowledge-driven expert models. The knowledge-driven models were revised based on the modifications suggested by the discovered models. The improved modeling using TAD Miner may enhance understanding of complex medical processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111432 | PMC |
http://dx.doi.org/10.1016/j.jbi.2023.104344 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
September 2025
College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g
The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.
View Article and Find Full Text PDFDriven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.
View Article and Find Full Text PDFBiomaterials
September 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
University Center for Research & Development (UCRD), Chandigarh University, NH-05 Chandigarh-Ludhiana Highway, Mohali 140413, Punjab, India.
Cardiovascular disorders remain a leading cause of death worldwide, and the use of contemporary stents is paving the way for a profound shift in the field of cardiology. In the surgical process postimplantation, the graft or stent and host-immune interaction play a significant role in the healing process, thus it is a major challenge in healthcare. To address these challenges, recent advancements have introduced bioactive coatings with specialized modifications in stents to enhance their interaction with surrounding environment.
View Article and Find Full Text PDF