Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neuropeptides, including insulin, are important regulators of physiological functions of the organisms. Trafficking through the Golgi is crucial for the regulation of secretion of insulin-like peptides. ASNA-1 (TRC40) and ENPL-1 (GRP94) are conserved insulin secretion regulators in Caenorhabditis elegans (and mammals), and mouse Grp94 mutants display type 2 diabetes. ENPL-1/GRP94 binds proinsulin and regulates proinsulin levels in C. elegans and mammalian cells. Here, we have found that ASNA-1 and ENPL-1 cooperate to regulate insulin secretion in worms via a physical interaction that is independent of the insulin-binding site of ENPL-1. The interaction occurs in DAF-28/insulin-expressing neurons and is sensitive to changes in DAF-28 pro-peptide levels. Consistently, ASNA-1 acted in neurons to promote DAF-28/insulin secretion. The chaperone form of ASNA-1 was likely the interaction partner of ENPL-1. Loss of asna-1 disrupted Golgi trafficking pathways. ASNA-1 localization to the Golgi was affected in enpl-1 mutants and ENPL-1 overexpression partially bypassed the ASNA-1 requirement. Taken together, we find a functional interaction between ENPL-1 and ASNA-1 that is necessary to maintain proper insulin secretion in C. elegans and provides insights into how their loss might cause diabetes in mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112894PMC
http://dx.doi.org/10.1242/dev.201035DOI Listing

Publication Analysis

Top Keywords

insulin secretion
16
asna-1
9
enpl-1
8
interaction enpl-1
8
enpl-1 asna-1
8
secretion elegans
8
secretion
6
insulin
5
proinsulin-dependent interaction
4
asna-1 neurons
4

Similar Publications

Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.

View Article and Find Full Text PDF

Aims/hypothesis: Alpha cell dysregulation is an integral part of type 2 diabetes pathophysiology, increasing fasting as well as postprandial glucose concentrations. Alpha cell dysregulation occurs in tandem with the development of insulin resistance and changes in beta cell function. Our aim was to investigate, using mathematical modelling, the role of alpha cell dysregulation in beta cell compensatory insulin secretion and subsequent failure in the progression from normoglycaemia to type 2 diabetes defined by ADA criteria.

View Article and Find Full Text PDF

In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia and associated with severe complications, including cardiovascular diseases, neuropathy, nephropathy, and retinopathy. Although synthetic antidiabetic drugs are available, the side effects and limited long-term effectiveness of these medications highlight the urgent need for safer, more potent alternative therapies. L.

View Article and Find Full Text PDF

Pancreatic Islet Cell Hormones: Secretion, Function, and Diabetes Therapy.

MedComm (2020)

September 2025

Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital Sichuan University Chen

The pancreatic islets of Langerhans, which are composed of α, β, δ, ε, and PP cells, orchestrate systemic glucose homeostasis through tightly regulated hormone secretion. Although the precise mechanisms involving β cells in the onset and progression of diabetes have been elucidated and insulin replacement therapy remains the primary treatment modality, the regulatory processes, functions, and specific roles of other pancreatic islet hormones in diabetes continue to be the subject of ongoing investigation. At present, a comprehensive review of the secretion and regulation of pancreatic islet cell hormones as well as the related mechanisms of diabetes is lacking.

View Article and Find Full Text PDF