Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite the massive investment in Alzheimer's disease (AD), there are still no disease-modifying treatments (DMTs) for AD. One major reason is attributed to the limitation of clinical "one-size-fits-all" approach, since the same AD treatment solely based on clinical diagnosis was unlikely to achieve good clinical efficacy. In recent years, computational approaches based on multiomics data have provided an unprecedented opportunity for drug discovery since they can substantially lower the costs and boost the efficiency. In this study, we intended to identify potential drug candidates for different pathological stages of AD by computationally repurposing Food and Drug Administration (FDA) approved drugs. First, we assembled gene expression data from three different AD pathological stages, which include mild cognitive impairment (MCI) and early and late stages of AD (EAD, LAD). We next quantified the network distances between drug target networks and AD modules by utilizing a network proximity approach, and identified 193 candidates that possessed significant associations with AD. After searching for previous literature evidence, 63 out of 193 (32.6%) predicted drugs were demonstrated to exert therapeutic effects on AD. We further explored the novel mechanism of action (MOA) for these drug candidates by determining the specific brain cells they might function on based on AD patient single cell transcriptomic data. Additionally, we selected several promising candidates that could cross the blood brain barrier together with confirmed neuroprotective effects, and subsequently determined the antioxidative activity of these compounds. Experimental results showed that azathioprine decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels and improved the superoxide dismutase (SOD) activity in APP-SH-SY5Y cells. Finally, we deciphered the potential MOA of azathioprine against AD via network analysis and validated several apoptosis-related proteins (Caspase 3, Cleaved Caspase 3, Bax, Bcl2) through western blotting. In summary, this study presented an effective computational strategy utilizing omics data for AD drug repurposing, which provides a new perspective for drug discovery and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015208PMC
http://dx.doi.org/10.1016/j.csbj.2023.02.041DOI Listing

Publication Analysis

Top Keywords

drug candidates
12
pathological stages
12
drug
8
candidates pathological
8
alzheimer's disease
8
drug discovery
8
candidates
5
network
4
network proximity-based
4
proximity-based computational
4

Similar Publications

This review highlights the integration of drug repurposing and nanotechnology-driven delivery strategies as innovative approaches to enhance the antifungal activity of statins against mucosal candidiasis, providing a framework for future translational research and clinical application. The rising prevalence of antifungal resistance and virulence factors of Candida albicans underscore the limitations of current therapies. Statins, commonly used as lipid-lowering agents, have emerged as attractive repurposed drug candidates due to their ability to interfere with fungal ergosterol biosynthesis and Ras-mediated signaling pathways.

View Article and Find Full Text PDF

Antioxidants: The Chemical Complexity Behind a Simple Word.

Acc Chem Res

September 2025

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ave. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A sección, Alcaldía Iztapalapa, 09310 Mexico City, Mexico.

ConspectusWhat does the word antioxidant mean? Antioxidants are supposed to be nontoxic, versatile molecules capable of counteracting the damaging effects of oxidative stress (OS). Thus, when evaluating a candidate molecule as an antioxidant, several aspects should be considered. Antioxidants are more than free radical scavengers.

View Article and Find Full Text PDF

Therapeutic Efficacy and Drug Metabolism of Griseorhodin A Induced by a Co-culture of Actinomycete Strain TMPU-20A002 and Mycobacterium smegmatis in Silkworm Infection Models.

Chem Pharm Bull (Tokyo)

September 2025

Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.

In screening for antibacterial agents from co-cultures of Mycobacterium smegmatis and microbial resources, such as actinomycetes and fungi, the known hydroxyquinone antibiotic griseorhodin A (1) was isolated from a co-culture of actinomycete strain TMPU-20A002 and M. smegmatis. Compound 1 exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE), with minimum inhibitory concentrations of 0.

View Article and Find Full Text PDF

Design, synthesis and antitumor activity of pentacyclic triterpenoid Asiatic acid derivatives as Sp1 inhibitors.

Bioorg Med Chem Lett

September 2025

Department of Chemical Engineering, Analysis and Test Center, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address:

Asiatic acid (AA) was used as the lead compound and 22 inhibitors of specificity protein 1 (Sp1) were designed and synthesized with modification at A ring and C-28 position of AA, whose structures were confirmed by HRMS, H NMR and C NMR. The growth inhibitory effects of Asiatic acid derivatives on human breast cancer cells (MCF-7) and cervical cancer cells (Hela) were determined by tetramethyl azole salt (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) colorimetric assay. The results showed that all of these compounds inhibited the proliferation of HeLa and MCF-7 cells, and all the derivatives showed stronger tumor cytotoxicity than AA, among which compounds I, II, and III were comparable to the positive control drug cisplatin.

View Article and Find Full Text PDF

Background: The proteome is a valuable resource for pinpointing therapeutic targets. Therefore, we conducted a proteome-wide Mendelian randomization (MR) study aimed at identifying potential protein markers and therapeutic targets for Anti-N-Methyl-D-Aspartate Receptor Encephalitis (NMDAR-E).

Methods: Protein quantitative trait loci (pQTLs) were obtained from seven published genome-wide association studies (GWASs) focusing on the plasma proteome, resulting in summary-level data for 734 circulating protein markers.

View Article and Find Full Text PDF