A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Supramolecularly assisted chlorhexidine-bacterial membrane interaction with enhanced antibacterial activity and reduced side effects. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial infection has emerged as a grievous threat to public health, and lots of antibacterial agents were developed to solve this issue. However, enhancing the antibacterial activity of antibacterial agents while reducing their side effects remains a challenge. Herein, a supramolecular antibacterial agent based on the host-guest interaction between cucurbit[7]uril (CB[7]) and chlorhexidine (CHX) was designed. CHX can be encapsulated in the cavity of CB[7] to form a 1:3 host-guest complex (CHX-3CB[7]). It was amazingly found that this supramolecular complex could display higher antibacterial activity than CHX alone. Electrospray mass spectrometry and UV-vis spectra revealed that the introduction of CB[7] promoted the protonation of N-atoms on CHX, resulting in stronger ion interaction with phospholipids and thus enhancing the destruction of the bacterial membrane. Scanning electron microscopy (SEM), surface ζ-potentials and outer/inner membrane integrity assays also reveal that the introduction of CB[7] aggravates the rupture of membrane. What is more, the cytotoxicity and irritation of CHX were decreased by forming the host-guest complex with CB[7]. This work provides a paradigm for enhancing antibacterial activity and reducing side effects of drugs through supramolecular chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.03.009DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
16
side effects
12
antibacterial agents
8
enhancing antibacterial
8
reducing side
8
host-guest complex
8
introduction cb[7]
8
antibacterial
7
cb[7]
5
chx
5

Similar Publications