Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Bacterial infection has emerged as a grievous threat to public health, and lots of antibacterial agents were developed to solve this issue. However, enhancing the antibacterial activity of antibacterial agents while reducing their side effects remains a challenge. Herein, a supramolecular antibacterial agent based on the host-guest interaction between cucurbit[7]uril (CB[7]) and chlorhexidine (CHX) was designed. CHX can be encapsulated in the cavity of CB[7] to form a 1:3 host-guest complex (CHX-3CB[7]). It was amazingly found that this supramolecular complex could display higher antibacterial activity than CHX alone. Electrospray mass spectrometry and UV-vis spectra revealed that the introduction of CB[7] promoted the protonation of N-atoms on CHX, resulting in stronger ion interaction with phospholipids and thus enhancing the destruction of the bacterial membrane. Scanning electron microscopy (SEM), surface ζ-potentials and outer/inner membrane integrity assays also reveal that the introduction of CB[7] aggravates the rupture of membrane. What is more, the cytotoxicity and irritation of CHX were decreased by forming the host-guest complex with CB[7]. This work provides a paradigm for enhancing antibacterial activity and reducing side effects of drugs through supramolecular chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.03.009 | DOI Listing |