98%
921
2 minutes
20
Perturbation of solute carriers (SLCs) has been implicated in metabolic disorders and cancer, highlighting the potential for drug discovery and therapeutic opportunities. However, there is relatively little exploration of the clinical relevance and potential molecular mechanisms underlying the role of the SLC12 family in uveal melanoma (UVM). Here, we performed an integrative multiomics analysis of the SLC12 family in multicenter UVM datasets and found that high expression of SLC12A3 and SLC12A9 was associated with unfavorable prognosis. Moreover, SLC12A3 and SLC12A9 were highly expressed in UVM in vivo. We experimentally characterized the roles of these proteins in tumorigenesis in vitro and explored their association with the prognosis of UVM. Lastly, we identified the HCP5-miR-140-5p axis as a potential noncoding RNA pathway upstream of SLC12A3 and SLC12A9, which was associated with immunomodulation and may represent a novel predictor for clinical prognosis and responsiveness to checkpoint blockade immunotherapy. These findings may facilitate a better understanding of the SLCome and guide future rationalized development of SLC-targeted therapy and drug discovery for UVM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.labinv.2022.100022 | DOI Listing |
Lab Invest
March 2023
School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China. Electronic address:
Perturbation of solute carriers (SLCs) has been implicated in metabolic disorders and cancer, highlighting the potential for drug discovery and therapeutic opportunities. However, there is relatively little exploration of the clinical relevance and potential molecular mechanisms underlying the role of the SLC12 family in uveal melanoma (UVM). Here, we performed an integrative multiomics analysis of the SLC12 family in multicenter UVM datasets and found that high expression of SLC12A3 and SLC12A9 was associated with unfavorable prognosis.
View Article and Find Full Text PDFPflugers Arch
February 2004
Department of Cellular and Molecular Physiology, Yale University Medical School, 333 Cedar Street, P.O. Box 208026, SHM B147, New Haven, CT 06520-8026, USA.
The electroneutral cation-chloride-coupled cotransporter gene family ( SLC12) was identified initially at the molecular level in fish and then in mammals. This nine-member gene family encompasses two major branches, one including two bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporters and the thiazide-sensitive Na(+):Cl(-) cotransporter. Two of the genes in this branch ( SLC12A1 and SLC12A3), exhibit kidney-specific expression and function in renal salt reabsorption, whereas the third gene ( SLC12A2) is expressed ubiquitously and plays a key role in epithelial salt secretion and cell volume regulation.
View Article and Find Full Text PDF