Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Autoimmune diseases are life-threatening disorders that cause increasing disability over time. Systemic lupus erythematosus (SLE) and other autoimmune diseases arise when immune stimuli override mechanisms of self-tolerance. Accumulating evidence has demonstrated that protein glycosylation is substantially altered in autoimmune disease development, but the mechanisms by which glycans trigger these autoreactive immune responses are still largely unclear. In this study, we found that presence of microbial-associated mannose structures at the surface of the kidney triggers the recognition of DC-SIGN-expressing γδ T cells, inducing a pathogenic interleukin-17a (IL-17a)-mediated autoimmune response. Mice lacking , which have a higher abundance of mannose structures in the kidney, displayed increased γδ T cell infiltration into the kidney that was associated with spontaneous development of lupus in older mice. -acetylglucosamine supplementation, which promoted biosynthesis of tolerogenic branched N-glycans in the kidney, was found to inhibit γδ T cell infiltration and control disease development. Together, this work reveals a mannose-γδ T cell-IL-17a axis in SLE immunopathogenesis and highlights glycometabolic reprogramming as a therapeutic strategy for autoimmune disease treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.abo1930 | DOI Listing |