Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Hypothesis: Dynamics of the distributed sets of functionally synchronized brain regions, known as large-scale networks, are essential for the emotional state and cognitive processes. However, few studies were performed to elucidate the aberrant dynamics across the large-scale networks across multiple psychiatric disorders. In this paper, we aimed to investigate dynamic aspects of the aberrancy of the causal connections among the large-scale networks of the multiple psychiatric disorders.

Study Design: We applied dynamic causal modeling (DCM) to the large-sample multi-site dataset with 739 participants from 4 imaging sites including 4 different groups, healthy controls, schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD), to compare the causal relationships among the large-scale networks, including visual network, somatomotor network (SMN), dorsal attention network (DAN), salience network (SAN), limbic network (LIN), frontoparietal network, and default mode network.

Study Results: DCM showed that the decreased self-inhibitory connection of LIN was the common aberrant connection pattern across psychiatry disorders. Furthermore, increased causal connections from LIN to multiple networks, aberrant self-inhibitory connections of DAN and SMN, and increased self-inhibitory connection of SAN were disorder-specific patterns for SCZ, MDD, and BD, respectively.

Conclusions: DCM revealed that LIN was the core abnormal network common to psychiatric disorders. Furthermore, DCM showed disorder-specific abnormal patterns of causal connections across the 7 networks. Our findings suggested that aberrant dynamics among the large-scale networks could be a key biomarker for these transdiagnostic psychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318885PMC
http://dx.doi.org/10.1093/schbul/sbad022DOI Listing

Publication Analysis

Top Keywords

large-scale networks
20
psychiatric disorders
16
causal connections
12
network
8
large-sample multi-site
8
aberrant dynamics
8
dynamics large-scale
8
networks multiple
8
multiple psychiatric
8
self-inhibitory connection
8

Similar Publications

Background: Although current evidence supports the effectiveness of social norm feedback (SNF) interventions, their sustained integration into primary care remains limited. Drawing on the elements of the antimicrobial SNF intervention strategy identified through the Delphi-based evidence applicability evaluation, this study aims to explore the barriers and facilitators to its implementation in primary care institutions, thereby informing future optimization.

Methods: Based on the five domains of the Consolidated Framework for Implementation Research (CFIR), we developed semi-structured interview and focus group discussion guides.

View Article and Find Full Text PDF

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF

Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.

View Article and Find Full Text PDF

In recent years Quantum Computing prominently entered in the field of Computational Chemistry, importing and transforming computational methods and ideas originally developed within other disciplines, such as Physics, Mathematics and Computer Science into algorithms able to estimate quantum properties of atoms and molecules on present and future quantum devices. An important role in this contamination process is attributed to Quantum Information techniques, having the 2-fold role of contributing to the analysis of electron correlation and entanglements and guiding the construction of wave function variational ansatzes for the Variational Quantum Eigensolver technique. This paper introduces the tool SparQ (Sparse Quantum state analysis), designed to efficiently compute fundamental quantum information theory observables on post-Hartree-Fock wave functions sparse in their definition space.

View Article and Find Full Text PDF

Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.

View Article and Find Full Text PDF