A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Landslide Susceptibility Evaluation of Machine Learning Based on Information Volume and Frequency Ratio: A Case Study of Weixin County, China. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A landslide is one of the most destructive natural disasters in the world. The accurate modeling and prediction of landslide hazards have been used as some of the vital tools for landslide disaster prevention and control. The purpose of this study was to explore the application of coupling models in landslide susceptibility evaluation. This paper used Weixin County as the research object. First, according to the landslide catalog database constructed, there were 345 landslides in the study area. Twelve environmental factors were selected, including terrain (elevation, slope, slope direction, plane curvature, and profile curvature), geological structure (stratigraphic lithology and distance from fault zone), meteorological hydrology (average annual rainfall and distance to rivers), and land cover (NDVI, land use, and distance to roads). Then, a single model (logistic regression, support vector machine, and random forest) and a coupled model (IV-LR, IV-SVM, IV-RF, FR-LR, FR-SVM, and FR-RF) based on information volume and frequency ratio were constructed, and the accuracy and reliability of the models were compared and analyzed. Finally, the influence of environmental factors on landslide susceptibility under the optimal model was discussed. The results showed that the prediction accuracy of the nine models ranged from 75.2% (LR model) to 94.9% (FR-RF model), and the coupling accuracy was generally higher than that of the single model. Therefore, the coupling model could improve the prediction accuracy of the model to a certain extent. The FR-RF coupling model had the highest accuracy. Under the optimal model FR-RF, distance from the road, NDVI, and land use were the three most important environmental factors, ac-counting for 20.15%, 13.37%, and 9.69%, respectively. Therefore, it was necessary for Weixin County to strengthen the monitoring of mountains near roads and areas with sparse vegetation to prevent landslides caused by human activities and rainfall.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007018PMC
http://dx.doi.org/10.3390/s23052549DOI Listing

Publication Analysis

Top Keywords

landslide susceptibility
12
weixin county
12
environmental factors
12
model
10
susceptibility evaluation
8
based volume
8
volume frequency
8
frequency ratio
8
ndvi land
8
single model
8

Similar Publications