98%
921
2 minutes
20
In this paper, the time- and temperature-dependent cyclic ratchetting plasticity of the nickel-based alloy IN100 is experimentally investigated in strain-controlled experiments in the temperature range from 300 °C to 1050 °C. To this end, uniaxial material tests are performed with complex loading histories designed to activate phenomena as strain rate dependency, stress relaxation as well as the Bauschinger effect, cyclic hardening and softening, ratchetting and recovery from hardening. Plasticity models with different levels of complexity are presented that consider these phenomena, and a strategy is derived to determine the multitude of temperature-dependent material properties of the models in a step-by-step procedure based on sub-sets of experimental data of isothermal experiments. The models and the material properties are validated based on the results of non-isothermal experiments. A good description of the time- and temperature-dependent cyclic ratchetting plasticity of IN100 is obtained for isothermal as well as non-isothermal loading with models including ratchetting terms in the kinematic hardening law and the material properties obtained with the proposed strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004477 | PMC |
http://dx.doi.org/10.3390/ma16051888 | DOI Listing |
PLoS One
September 2025
Instituto de Física, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
Dengue fever remains a major public health concern, requiring continuous efforts to mitigate its impact. This study investigates the influence of key temperature-dependent parameters on dengue transmission dynamics in Foz do Iguaçu, a tri-border municipality in southern Brazil, using a mathematical model based on a system of ordinary differential equations. The fitted model aligns well with observed data.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, PR China. Electronic address:
Wearable sweat sensors offer noninvasive health monitoring through multiplexed biomarker analysis, delivering real-time diagnostics with continuous operational capability. However, chronic cutaneous interface hydration during prolonged monitoring induces adhesive delamination phenomena that manifest as signal attenuation, which fundamentally limits their clinical reliability. To address this challenge, we developed a thermodynamically adaptive polymer interface combining three functional components: mussel-inspired catechol moieties for moisture-tolerant adhesion, hydrophobic acrylates ensuring mechanical stability, and N-isopropylacrylamide enabling thermal responsiveness.
View Article and Find Full Text PDFAppl Radiat Isot
September 2025
Dept. of Electrical and Computer Engineering, Illinois Institute of Technology, Siegel Hall, 3301 South Dearborn Street, Chicago, Il, 60616, USA; Sch. of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Feedback resistor-less charge-sensitive pre-amplifiers for X-ray/γ-ray photon (and e particle) counting photodiode radiation spectrometers operate with their input transistor in an unusual mode (i.e. the gate is slightly forward biased).
View Article and Find Full Text PDFACS Omega
August 2025
Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia.
The study investigates the structural and dynamical properties of acetonitrile-water mixtures using molecular dynamics simulations over a broad range of acetonitrile molar fractions (0.0 to 1.0) and temperatures (298-348 K).
View Article and Find Full Text PDFJ Med Microbiol
August 2025
School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA.
is the leading cause of bacterial gastroenteritis worldwide. Infections with can result in two different diarrhoeal manifestations in humans: watery diarrhoea or bloody/inflammatory diarrhoea. Currently, little is known about and/or host factors associated with the elicitation of these two distinct diarrhoeal manifestations.
View Article and Find Full Text PDF