98%
921
2 minutes
20
Background: The intestinal flora has been shown to be involved in the progression of Alzheimer's disease (AD) and can be improved by β-glucan, a polysaccharide derived from Saccharomyces cerevisiae, which affects cognitive function through the intestinal flora. However, it is not known if this effect of β-glucan is involved in AD.
Method: This study used behavioral testing to measure cognitive function. After that, high-throughput 16 S rRNA gene sequencing and GC-MS were used to analyze the intestinal microbiota and metabolite SCFAs of AD model mice, and further explore the relationship between intestinal flora and neuroinflammation. Finally, the expressions of inflammatory factors in the mouse brain were detected by Western blot and Elisa methods.
Results: We found that appropriate supplementation of β-glucan during the progression of AD can improve cognitive impairment and reduce A β plaque deposition. In addition, supplementation of β-glucan can also promote changes in the composition of the intestinal flora, thereby changing the flora metabolites in the intestinal content and reduce the activation of inflammatory factors and microglia in the cerebral cortex and hippocampus through the brain-gut axis. While reducing the expression of inflammatory factors in the hippocampus and cerebral cortex, thereby controlling neuroinflammation.
Conclusion: The imbalance of the gut microbiota and metabolites plays a role in the progression of AD; β-glucan blocks the development of AD by improving the gut microbiota and its metabolites and reducing neuroinflammation. β-Glucan is a potential strategy for the treatment of AD by reshaping the gut microbiota and improving its metabolites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173722 | PMC |
http://dx.doi.org/10.1111/cns.14132 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFBMC Vet Res
September 2025
Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.
View Article and Find Full Text PDFNat Microbiol
September 2025
Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.
Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.
View Article and Find Full Text PDFNat Rev Gastroenterol Hepatol
September 2025
Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
Enteric dopaminergic signalling has a critical role in gastrointestinal motility, maintaining mucosal integrity and modulating the gut microbiome. In this Review, we provide an overview of dopamine metabolism and signalling pathways in the central nervous system and periphery and their effects on gastrointestinal health and disease. We describe the physiological role of enteric dopamine, including a discussion of therapeutic opportunities and future research needs.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan.
The maternal microbiome during pregnancy and the peripartum period plays a critical role in maternal health outcomes and establishing the neonatal gut microbiome, with long-term implications for offspring health. However, a healthy microbiome during these key periods has not been definitively characterized. This longitudinal study examines maternal and neonatal microbiomes using 16S rRNA amplicon sequencing in a Japanese cohort throughout pregnancy and the postpartum period.
View Article and Find Full Text PDF