Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The intestinal flora has been shown to be involved in the progression of Alzheimer's disease (AD) and can be improved by β-glucan, a polysaccharide derived from Saccharomyces cerevisiae, which affects cognitive function through the intestinal flora. However, it is not known if this effect of β-glucan is involved in AD.

Method: This study used behavioral testing to measure cognitive function. After that, high-throughput 16 S rRNA gene sequencing and GC-MS were used to analyze the intestinal microbiota and metabolite SCFAs of AD model mice, and further explore the relationship between intestinal flora and neuroinflammation. Finally, the expressions of inflammatory factors in the mouse brain were detected by Western blot and Elisa methods.

Results: We found that appropriate supplementation of β-glucan during the progression of AD can improve cognitive impairment and reduce A β plaque deposition. In addition, supplementation of β-glucan can also promote changes in the composition of the intestinal flora, thereby changing the flora metabolites in the intestinal content and reduce the activation of inflammatory factors and microglia in the cerebral cortex and hippocampus through the brain-gut axis. While reducing the expression of inflammatory factors in the hippocampus and cerebral cortex, thereby controlling neuroinflammation.

Conclusion: The imbalance of the gut microbiota and metabolites plays a role in the progression of AD; β-glucan blocks the development of AD by improving the gut microbiota and its metabolites and reducing neuroinflammation. β-Glucan is a potential strategy for the treatment of AD by reshaping the gut microbiota and improving its metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173722PMC
http://dx.doi.org/10.1111/cns.14132DOI Listing

Publication Analysis

Top Keywords

intestinal flora
20
inflammatory factors
12
gut microbiota
12
cognitive impairment
8
flora metabolites
8
cognitive function
8
supplementation β-glucan
8
cerebral cortex
8
microbiota metabolites
8
β-glucan
7

Similar Publications

Microbiome dysbiosis in reflux esophagitis has been extensively studied. However, limited research has examined microbiota across different segments of the upper gastrointestinal tract in reflux esophagitis. In this study, we investigated microbial alterations in three esophageal segments (upper, middle, and lower) and the gastric fundus of reflux esophagitis patients and healthy controls.

View Article and Find Full Text PDF

Background: Improving the efficacy of anti-programmed death 1 (PD-1) monoclonal antibody (mAb) therapy remains a major challenge for cancer immunotherapy in non-small cell lung cancer (NSCLC). Gut microbial metabolites can influence immunotherapy efficacy.

Methods: ELISA was used to compare the serum 5-hydroxyindoleacetic acid (5-HIAA) level in patients with NSCLC.

View Article and Find Full Text PDF

Introduction: Combined vascular endothelial growth factor/programmed death-ligand 1 blockade through atezolizumab/bevacizumab (A/B) is the current standard of care in advanced hepatocellular carcinoma (HCC). A/B substantially improved objective response rates compared with tyrosine kinase inhibitor sorafenib; however, a majority of patients will still not respond to A/B. Strong scientific rationale and emerging clinical data suggest that faecal microbiota transfer (FMT) may improve antitumour immune response on PD-(L)1 blockade.

View Article and Find Full Text PDF

Sepsis is a systemic inflammatory response syndrome triggered by infection. Severe sepsis is associated with dysbiosis of the intestinal flora and impaired intestinal function. Ellagic acid (EA) is a natural compound known for its ability to inhibit bacteria and viruses, thereby preventing infections.

View Article and Find Full Text PDF

Gut microbiome and mitochondrial crosstalk in Schizophrenia, a mental disability: Emerging mechanisms and therapeutic targets.

Neurosci Biobehav Rev

September 2025

Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India. Electronic address:

Gut-mitochondria is an emerging paradigm in understanding the pathophysiology of complex neuropsychiatric disorders such as Schizophrenia (SCZ). This bidirectional communication network connects the gastrointestinal microbiota with mitochondrial function and brain health, offering novel insights into disease onset and progression. SCZ, characterized by hallucinations, delusions, cognitive impairments, and social withdrawal, has traditionally been attributed to genetic and neurochemical imbalances.

View Article and Find Full Text PDF