98%
921
2 minutes
20
Although introducing an alkoxy group is one of the most popular methods to suppress the interfacial charge recombination process of dye-sensitized solar cells, understanding of its effects is still limited and a microscopic picture of the alkoxy effects is lacking. Two ullazine dyes with distinct alkoxy chains at the donor part are used to investigate the effects of the alkoxy group on the adsorption, dye aggregation and charge recombination process in our study. Different from the usual assumption, we find that alkoxy chains can not only play a shielding role, but can also assist dye adsorption and inhibit the charge recombination process more effectively by covering the TiO surface. We also find that the existence of alkyl chains can well inhibit the aggregation of dyes and reduce intermolecular electron transfer. Furthermore, an important structural feature at the interface, the Ti-O interaction between the oxygen atom of the alkoxy group and the Ti atom of the surface is also found to contribute substantially to the interface stability. New insights into the effects of the alkoxy group on auxiliary adsorption and inhibiting charge recombination through reducing the recombination sites pave the way for rational design of sensitizers with high performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp04867a | DOI Listing |
RSC Adv
September 2025
Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain
Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.
Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
The effect of sonocatalysis on anticancer treatment is always restricted by rapid recombination of charge and low utilization of the ultrasonic cavitation effect. Herein, cobalt-doped prussian blue (PB) nanocubes were synthesized, and then they were etched by acidic solution to obtain amorphous Co-FePB@1h with abundant defects including: Fe/Co defects, Fe-(CN) vacancies, and dangling bonds. Both doping and defect engineering contribute to decreasing the band gap and promoting charge separation.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
Perovskites have a large number of intrinsic defects and interface defects, which often lead to non-radiative recombination, and thus affect the efficiency of perovskite solar cells (PSCs). Introducing appropriate passivators between the perovskite layer and the transport layer for defect modification is crucial for improving the performance of PSCs. Herein, two positional isomers, 1-naphthylmethylammonium iodide (NMAI) and 2-naphthylmethylammonium iodide (NYAI) are designed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
For optoelectronic devices based on lead-halide perovskites and other semiconductors, a comprehensive understanding of the electric field influences on the carrier transport characteristics is critical to the optimization of their practical performances. To fulfill this challenging goal, here we have employed photoluminescence spatial image and transient absorption microscopy measurements on an individual CsPbBr microplate biased at external voltages in an Au/CsPbBr/Au device. At the subpicosecond time scale, some photogenerated excitons are dissociated into free electrons and holes that drift toward the electrodes to leave behind unfilled defect sites, which are capable of scattering the residual excitons to yield a reduced diffusion coefficient.
View Article and Find Full Text PDF