Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The existence of naturally occurring ribosome heterogeneity is now a well-acknowledged phenomenon. However, whether this heterogeneity leads to functionally diverse 'specialized ribosomes' is still a controversial topic. Here, we explore the biological function of RPL3L (uL3L), a ribosomal protein (RP) paralogue of RPL3 (uL3) that is exclusively expressed in skeletal muscle and heart tissues, by generating a viable homozygous Rpl3l knockout mouse strain. We identify a rescue mechanism in which, upon RPL3L depletion, RPL3 becomes up-regulated, yielding RPL3-containing ribosomes instead of RPL3L-containing ribosomes that are typically found in cardiomyocytes. Using both ribosome profiling (Ribo-seq) and a novel orthogonal approach consisting of ribosome pulldown coupled to nanopore sequencing (Nano-TRAP), we find that RPL3L modulates neither translational efficiency nor ribosome affinity towards a specific subset of transcripts. In contrast, we show that depletion of RPL3L leads to increased ribosome-mitochondria interactions in cardiomyocytes, which is accompanied by a significant increase in ATP levels, potentially as a result of fine-tuning of mitochondrial activity. Our results demonstrate that the existence of tissue-specific RP paralogues does not necessarily lead to enhanced translation of specific transcripts or modulation of translational output. Instead, we reveal a complex cellular scenario in which RPL3L modulates the expression of RPL3, which in turn affects ribosomal subcellular localization and, ultimately, mitochondrial activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287911PMC
http://dx.doi.org/10.1093/nar/gkad121DOI Listing

Publication Analysis

Top Keywords

mitochondrial activity
12
rpl3l-containing ribosomes
8
rpl3l modulates
8
rpl3l
6
dynamic interplay
4
interplay rpl3-
4
rpl3- rpl3l-containing
4
ribosomes modulates
4
modulates mitochondrial
4
activity mammalian
4

Similar Publications

Mammalian mitohormesis: from mitochondrial stressors to organismal benefits.

EMBO J

September 2025

Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720, USA.

A variety of stressors, including environmental insults, pathological conditions, and transition states, constantly challenge cells that, in turn, activate adaptive responses to maintain homeostasis. Mitochondria have pivotal roles in orchestrating these responses that influence not only cellular energy production but also broader physiological processes. Mitochondria contribute to stress adaptation through mechanisms including induction of the mitochondrial unfolded protein response (UPR) and the integrated stress response (ISR).

View Article and Find Full Text PDF

Metabolic and immunomodulatory control of type 2 diabetes via generating cellular itaconate reservoirs by inflammatory-targeting gene-therapy nanovesicles.

Trends Biotechnol

September 2025

Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator

Type 2 diabetes (T2D) is characterized by persistent and unresolved tissue inflammation caused by the infiltration and dysregulation of immune cells. Current therapeutics targeting inflammatory immune cells for T2D remain limited. In this study, we analyzed single cell RNA from metabolic organs in T2D, revealing increased macrophage accumulation and a pathogenic macrophage subpopulation defined as NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammatory and metabolically activated macrophages.

View Article and Find Full Text PDF

Purpose: To assess the association between skeletal-muscle endurance performance and mitochondrial oxidative capacity of the hamstrings as respectively measured by biomechanical and physiological standards.

Methods: Nineteen (12 men and 7 women) healthy, young, recreationally active participants enrolled in our study. Participant characteristics comprised a mean and SD age of 21.

View Article and Find Full Text PDF

Ribonucleotide reductase (RR) is the rate-limiting enzyme for NTPs conversion into dNTPs, playing a central role in genome replication and maintenance. It is composed by two catalytic (RRM1) and two regulatory (alternatively RRM2 and p53R2) subunits, of which RRM2's functionality depends on a diferric center in the active site and is one of the most expressed genes in many tumors, among which Rhabdomyosarcoma (RMS), a rare and aggressive pediatric tumor. Didox (3,4-dihydroxy-benzohydroxamic acid) is a highly effective RRM2 inhibitor with iron chelating properties which shows fewer in vivo side effects than classical RR inhibitors.

View Article and Find Full Text PDF

Oridonin mitigates bacterial pneumonia by regulating mitochondrial integrity and ferroptosis via targeting KEAP1/NRF2 signaling.

Biochem Pharmacol

September 2025

Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, 310015 Hangzhou, China. Electronic address:

Methicillin-resistant Staphylococcus aureus (MRSA) is a highly virulent and drug-resistant pathogen frequently causing bacterial pneumonia. Currently, there are limited effective treatments available due to the rapidly evolving resistance of bacteria. Therefore, there is an urgent need to develop novel therapies that focus on host-pathogen interactions.

View Article and Find Full Text PDF