98%
921
2 minutes
20
In this work, it is reported that large-area (centimeter-scale) arrays of non-close-packed polystyrene-tethered gold nanorod (AuNR@PS) can be prepared through a liquid-liquid interfacial assembly method. Most importantly, the orientation of AuNRs in the arrays can be controlled by changing the intensity and direction of electric field applied in the solvent annealing process. The interparticle distance of AuNR can be tuned by varying the length of polymer ligands. Moreover, the AuNR@PS with short PS ligand are favorited to form orientated arrays with the assistance of electric field, while long PS ligands make the orientation of AuNRs difficult. The orientated AuNR@PS arrays are employed as the nano-floating gate of field-effect transistor memory device. Tunable charge trapping and retention characteristics in the device can be realized by electrical pulse with visible light illumination. The memory device with orientated AuNR@PS array required less illumination time (1 s) at the same onset voltage in programming operation, compared to the control device with disordered AuNR@PS array (illumination time: 3 s). Moreover, the orientated AuNR@PS array-based memory device can maintain the stored data for more than 9000 s, and exhibits stable endurance characteristic without significant degradation in 50 programming/reading/erasing/reading cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202208288 | DOI Listing |
Dan Med J
August 2025
Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte Hospital.
Introduction: Long-term cardiac monitoring has become more accessible with the advent of consumer-oriented wearable devices. Smartwatches (SWs) hold promise for extended rhythm monitoring owing to their availability and direct electronic health record (EHR) integration. We studied the clinical consequences of SW implementation in patients with palpitations.
View Article and Find Full Text PDFJ Healthc Sci Humanit
January 2024
Formerly Associate Professor of Epidemiology and Risk Analysis, Department of Pathobiology/Department of Graduate Public Health, College of Veterinary Medicine, Tuskegee University, Phone: (334) 524-1988, Email:
The COVID-19 pandemic is a highly infectious disease of paramount public health importance. COVID-19 is mainly transmitted via human-to-human contact. This could be through self-inoculation resulting from failure to observe proper hand hygiene and infection control practices.
View Article and Find Full Text PDFFront Microbiol
August 2025
Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
Polyurethane (PU), a segmented block copolymer with chemically resistant urethane linkages and tunable architecture, presents persistent biological recycling challenges. This study presents a Bacterial Laccase-Mediated System (BLMS) derived from for efficient degradation of polyester- and polyether-PU. Utilizing the laccase CotA and mediator 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the BLMS demonstrated effective de polymerization of both commercial and self-synthesized PU foams, including polyester- and polyether-types.
View Article and Find Full Text PDFFront Reprod Health
August 2025
Department of Social Care and Social Work, Manchester Metropolitan University, Manchester, United Kingdom.
The climate crisis jeopardizes human health and is one of the greatest threats to reproductive autonomy and human rights. Witnessing these threats, the Sexual and Reproductive Health and Rights and Climate Justice Coalition was formed in 2021 to advocate on the intersections between climate change and sexual and reproductive health, rights, and justice (SRHRJ). The Coalition's purpose is to leverage intersectional approaches to influence global and national policies, programs, and funding mechanisms to advance climate justice, gender equality, and human rights.
View Article and Find Full Text PDFILIVER
September 2025
Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China.
Anatomic resection remains a fundamental principle in the surgical management of hepatobiliary diseases, whether performed through traditional open surgery or advanced minimally invasive approaches such as laparoscopic or robotic-assisted techniques. However, a universally accepted and clearly defined anatomical framework for intraoperative anatomical delineation remains lacking. The growing clinical adoption of Laennec membrane-guided anatomical strategies has been associated with notable improvements in surgical efficacy and anatomical precision.
View Article and Find Full Text PDF