1,4-Dioxane removal in nitrifying sand filters treating domestic wastewater: Influence of water matrix and microbial inhibitors.

Chemosphere

New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA. Electronic address:

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

1,4-Dioxane is a recalcitrant pollutant in water and is ineffectively removed during conventional water and wastewater treatment processes. In this study, we demonstrate the application of nitrifying sand filters to remove 1,4-dioxane from domestic wastewater without the need for bioaugmentation or biostimulation. The sand columns were able to remove 61 ± 10% of 1,4-dioxane on average (initial concentration: 50 μg/L) from wastewater, outperforming conventional wastewater treatment approaches. Microbial analysis revealed the presence of 1,4-dioxane degrading functional genes (dxmB, phe, mmox, and prmA) to support biodegradation being the dominant degradation pathway. Adding antibiotics (sulfamethoxazole and ciprofloxacin), that temporarily inhibited the nitrification process during the dosing period, showed a minor effect in 1,4-dioxane removal (6-8% decline, p < 0.05), suggesting solid resilience of the 1,4-dioxane-degrading microbial community in the columns. Columns amended with sodium azide significantly (p < 0.05) depressed 1,4-dioxane removal in the early stage of dosing but followed by a gradual increase of the removal over time to >80%, presumably due to a shift in the microbial community toward azide-resistant 1,4-dioxane degrading microbes (e.g., fungi). This study demonstrated for the first time the resilience of the 1,4-dioxane-degrading microorganisms during antibiotic shocks, and the selective enrichment of efficient 1,4-dioxane-degrading microbes after azide poisoning. Our observation could provide insights into designing better 1,4-dioxane remediation strategies in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138304DOI Listing

Publication Analysis

Top Keywords

14-dioxane removal
8
nitrifying sand
8
sand filters
8
domestic wastewater
8
wastewater treatment
8
14-dioxane
6
wastewater
5
removal nitrifying
4
filters treating
4
treating domestic
4

Similar Publications