98%
921
2 minutes
20
The basic fibroblast growth factor (bFGF) plays a significant role in promoting the process of bone repair, but bFGF cannot keep its biological activity stable under normal physiological conditions. Therefore, the development of better biomaterials to carry bFGF remains a challenge for bone repair and regeneration. Here we designed a novel recombinant human collagen (rhCol), which could be cross-linked by transglutaminase (TG) and loaded bFGF to prepare rhCol/bFGF hydrogels. The rhCol hydrogel possessed a porous structure and good mechanical properties. The assays, including cell proliferation, migration, and adhesion assay, were performed to evaluate the biocompatibility of rhCol/bFGF and the results demonstrated that the rhCol/bFGF promoted cell proliferation, migration and adhesion. The rhCol/bFGF hydrogel degraded and released bFGF controllably, enhancing utilization rate of bFGF and allowing osteoinductive activity. The results of RT-qPCR and immunofluorescence staining also proved that rhCol/bFGF promoted expression of bone-related proteins. The rhCol/bFGF hydrogels were applied in the cranial defect in rats and the results confirmed that it accelerates bone defect repair. In conclusion, rhCol/bFGF hydrogel has excellent biomechanical properties and can continuously release bFGF to promote bone regeneration, suggesting that rhCol/bFGF hydrogel is a potential scaffold in clinic application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.123864 | DOI Listing |
Int J Biol Macromol
May 2023
Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 No
The basic fibroblast growth factor (bFGF) plays a significant role in promoting the process of bone repair, but bFGF cannot keep its biological activity stable under normal physiological conditions. Therefore, the development of better biomaterials to carry bFGF remains a challenge for bone repair and regeneration. Here we designed a novel recombinant human collagen (rhCol), which could be cross-linked by transglutaminase (TG) and loaded bFGF to prepare rhCol/bFGF hydrogels.
View Article and Find Full Text PDF