98%
921
2 minutes
20
Aromatic hydrocarbons are persistent pollutants in aquatic systems as endocrine disruptors, significantly impacting natural ecosystems and human health. Microbes perform as natural bioremediators to remove and regulate aromatic hydrocarbons in the marine ecosystem. The present study focuses upon the comparative diversity and abundance of various hydrocarbon-degrading enzymes and their pathways from deep sediments along the Gulf of Kathiawar Peninsula and Arabian Sea, India. The elucidation of large number of degradation pathways in the study area under the presence of a wide range of pollutants whose fate needs to be addressed. Sediment core samples were collected, and the whole microbiome was sequenced. Analysis of the predicted ORFs (open reading frames) against the AromaDeg database revealed 2946 aromatic hydrocarbon-degrading enzyme sequences. Statistical analysis portrayed that the Gulfs were more diverse in degradation pathways compared to the open sea, with the Gulf of Kutch being more prosperous and more diverse than the Gulf of Cambay. The vast majority of the annotated ORFs belonged to groups of dioxygenases that included catechol, gentisate, and benzene dioxygenases, along with Rieske (2Fe-2S) and vicinal oxygen chelate (VOC) family proteins. From the sampling sites, only 960 of the total predicted genes were given taxonomic annotations, which mention the presence of many under-explored marine microorganism-derived hydrocarbon degrading genes and pathways. Through the present study, we tried to unveil the array of catabolic pathways of aromatic hydrocarbon degradation and genes from a marine ecosystem that upholds economic and ecological significance in India. Thus, this study provides vast opportunities and strategies for microbial resource recovery in marine ecosystems, which can be investigated to explore aromatic hydrocarbon degradation and their potential mechanisms under various oxic or anoxic environments. Future studies should focus on aromatic hydrocarbon degradation by considering degradation pathways, biochemical analysis, enzymatic, metabolic, and genetic systems, and regulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.115603 | DOI Listing |
Nephrol Dial Transplant
September 2025
Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.
Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.
Crit Rev Food Sci Nutr
September 2025
Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Arencibia Clinic, San Sebastian, Spain.
Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.
View Article and Find Full Text PDFArch Pharm Res
September 2025
College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.
c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.
View Article and Find Full Text PDF