98%
921
2 minutes
20
Residual antibiotics in wastewater threaten living organisms and the ecosystem, while the photocatalytic process is recognized as one of the most eco-friendly and promising technologies for the treatment of antibiotic wastewater. In this study, a novel Z-scheme AgPO/1T@2H-MoS heterojunction was synthesized, characterized, and used for the visible-light-driven photocatalytic degradation of tetracycline hydrochloride (TCH). It was found that AgPO/1T@2H-MoS dosage and coexisting anions had significant effects on the degradation efficiency, which could reach up to 98.9 % within 10 min under the optimal condition. Combing experiments and theoretical calculations, the degradation pathway and mechanism were thoroughly investigated. The excellent photocatalytic property of AgPO/1T@2H-MoS was achieved attributed to the Z-scheme heterojunction structure, which remarkably inhibited the recombination of photoinduced electrons and holes. The potential toxicity and mutagenicity for TCH and generated intermediates were evaluated, which revealed the ecological toxicity of antibiotic wastewater was reduced effectively during the photocatalytic degradation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.130951 | DOI Listing |
Nanoscale
September 2025
Institute of Process Engineering, Chinese Academy of Sciences, Bei Jing, 100190, PR China.
Building a heterogeneous structure is favorable for improving the performance of photocatalyst materials. In this study, we fabricated a ternary SrTiO@TiO/SrSO heterojunction material with a porous shell composite structure a simple one-step direct high-temperature treatment using the commercial strontium titanate and ZnSO. The effect of the synthesis temperature on the ZS-STO- products was investigated.
View Article and Find Full Text PDFEnviron Geochem Health
September 2025
Department of Chemistry, Government Arts College(A), Salem, Tamil Nadu, 636007, India.
A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.
View Article and Find Full Text PDFEnviron Res
September 2025
Center for High Technology Development, Nguyen Tat Thanh University, Ho Chi Minh City Hi-Tech Park, Ho Chi Minh City, Vietnam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. Electronic address:
The development of novel multijunction heterostructure photocatalysts is critical for the efficient degradation of organic pollutants, attributed to their ability to enhance the separation of photogenerated electron-hole pairs. In our study, a ternary composite, melem/BiVO/g-CN (BVO/CNMH), was synthesized via an acid-soaking method followed by calcination, using g-CN as a sacrificial precursor in the presence of BiVO. This approach yielded a porous, interconnected architecture in BVO/CNMH.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFRSC Adv
September 2025
School of Engineering and Technology, National Textile University 37640 Faisalabad Pakistan
[This retracts the article DOI: 10.1039/D4RA01544D.].
View Article and Find Full Text PDF