Fine Particulate Matter (PM2.5)-Induced Pulmonary Oxidative Stress Contributes to Changes in the Plasma Lipidome and Liver Transcriptome in Mice.

Toxicol Sci

Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fine particulate matter (PM2.5) air pollution exposure increases the cardiovascular disease risk. Although the specific mechanisms remain elusive, it is thought that PM2.5-induced oxidative stress and endothelial dysfunction contribute to this pathogenesis. Our previous findings indicate that PM2.5 impairs vascular health via a circulating factor and that plasma lipid changes contribute to the observed vascular effects. In the current study, we extend on these findings by further characterizing PM2.5-induced changes in circulating lipids and examining whether the observed changes were accompanied by related alterations in the liver transcriptome. To address the role of pulmonary oxidative stress, we exposed wild-type (WT) mice and mice that overexpress extracellular superoxide dismutase (ecSOD-Tg) in the lungs to concentrated ambient PM2.5 (CAP, 9 days). We found that CAP decreased circulating complex lipids and increased free fatty acids and acylcarnitines in WT, but not ecSOD-Tg mice. These plasma lipid changes were accompanied by transcriptional changes in genes that regulate lipid metabolism (e.g., upregulation of lipid biosynthesis, downregulation of mitochondrial/peroxisomal FA metabolism) in the liver. The CAP-induced changes in lipid homeostasis and liver transcriptome were accompanied by pulmonary but not hepatic oxidative stress and were largely absent in ecSOD-Tg mice. Our results suggest that PM2.5 impacts hepatic lipid metabolism; however, it remains unclear whether the transcriptional changes in the liver contribute to PM2.5-induced changes in plasma lipids. Regardless, PM2.5-induced changes in the plasma lipidome and hepatic transcriptome are, at least in part, mediated by pulmonary oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10109534PMC
http://dx.doi.org/10.1093/toxsci/kfad020DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
pulmonary oxidative
12
changes plasma
12
liver transcriptome
12
pm25-induced changes
12
changes
10
fine particulate
8
particulate matter
8
plasma lipidome
8
plasma lipid
8

Similar Publications

Research Progress on Ferroptosis Regulation of Female Reproduction.

Biol Trace Elem Res

September 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Ferroptosis is a form of iron-regulated cell death that plays a critical role in various aspects of female reproductive system development. These processes include the normal estrous cycle, ovarian formation, follicular maturation, ovulation, and pregnancy, all of which are essential for maintaining reproductive health in female animals. However, excessive iron leads to the accumulation of reactive oxygen species within cells, disrupting intracellular redox balance, inducing mitophagy, membrane rupture, and lipid peroxidation, which can damage tissues and cells, ultimately resulting in ferroptosis.

View Article and Find Full Text PDF

Deltamethrin (DM) and cypermethrin (CM) are widely used pesticides belonging to the pyrethroid class. Antagonistic microorganisms are preferred as biocontrol agents to mitigate pesticide toxicity. Probiotic bacteria and yeasts are the primary biocontrol agents employed for this purpose.

View Article and Find Full Text PDF

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF

Ashwagandha (Withania somnifera), a revered herb in Ayurvedic medicine, has gained significant scientific recognition for its potential to promote healthy aging. Traditionally used as a Rasayana or rejuvenator, this potent adaptogen helps the body manage stress and enhance vitality. This review synthesises extensive evidence for its multifaceted anti-aging capabilities, which target key hallmarks of the aging process.

View Article and Find Full Text PDF

Interaction between diabetes and osteoporosis: imbalance between inflammation and bone remodeling.

Osteoporos Int

September 2025

Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400037, China.

Diabetes and osteoporosis are common chronic diseases worldwide, and there is a complex pathological relationship between the two. Due to hyperglycemia, insulin resistance, and accumulation of advanced glycation end products (AGEs), diabetic patients often show a higher risk of fractures. At the same time, chronic low-grade inflammation and oxidative stress caused by diabetes also play an important role in the occurrence of osteoporosis, disrupting the balance of bone remodeling.

View Article and Find Full Text PDF