Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bt transgenic white poplar has been commercially planted in China since 2002, and it showed obvious insect resistance in the field. However, the ecological risk of planting Bt transgenic poplar in a field contaminated with heavy metals has received little attention. The effects of Pb(II) and Zn(II) contamination on the adsorption, desorption and degradation of Bt toxin identical to Bt transgenic poplar in black soil were studied. The results showed that the adsorption of Bt toxin was enhanced and the desorption of Bt toxin was inhibited in black soil by Pb(II) and Zn(II) at concentrations between 0 and 1 mmol/L, and the effect of Pb(II) on Bt toxin was greater than that of Zn(II). In the presence of heavy metal ions, the Cry1Ac toxin molecules are oriented with domain I toward soil particles through the metal ion bridge. The promoting mechanism of Bt toxin adsorption by heavy metal ions in black soil is mainly attributed to cation-controlled electrostatic attraction (CCEA), which is different from patch-controlled electrostatic attraction (PCEA). With the increase in soil concentration from 1 to 4 mg/mL, the adsorption amount of Bt toxin showed a downward trend, and both Pb(II) and Zn(II) had the maximal promotion effect when the soil concentration was 2 mg/mL. The promoting effect of Zn(II) on the adsorption of Bt toxin increased with the increased temperature (5-45 °C), but the promoting effect of Pb(II) was maximal at 25 °C. Both Pb(II) and Zn(II) affected the degradation characteristics of Bt toxin in black soil. For the lead-contaminated black soil, the residual amount of Bt toxin increased in the early stage but decreased in the later stage compared to the control soil. For the zinc-contaminated black soil, the residual amount of Bt toxin decreased compared to the control soil except between the second and tenth days. In this study, it was observed that Bt toxin was degraded rapidly in the early stage, followed by a large amount of released Bt toxin and slow degradation in the middle and late stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959839PMC
http://dx.doi.org/10.3390/toxics11020089DOI Listing

Publication Analysis

Top Keywords

black soil
28
pbii znii
20
toxin
14
transgenic poplar
12
soil
12
amount toxin
12
effects pbii
8
znii contamination
8
contamination adsorption
8
adsorption desorption
8

Similar Publications

Effects of chicken manure-derived black soldier fly organic fertilizer on soil carbon and nitrogen cycling: insights from metagenomic and microbial network analysis.

Environ Res

September 2025

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address: cmm114@mail

Black soldier fly (BSF) organic fertilizer is known to enhance soil fertility and promote plant growth. However, its effects on soil carbon (C) and nitrogen (N) cycling remains unclear. In this study, we established a BSF chicken manure bioconversion system to produce BSF organic fertilizer and investigate its impacts on soil C and N cycling, as well as microbial ecological networks through metagenomic analysis.

View Article and Find Full Text PDF

Biochar amendment improves Morchella sextelata yield by enhancing soil NO-N availability and increasing the diversity while decreasing the absolute abundance of fungal community.

Microbiol Res

August 2025

Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China; The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Black morel (Morchella sextelata) is widely regarded as a post-fire mushroom because of its prolific fruiting in post-fire forest soils enriched with charcoal. Intriguingly, artificial cultivation of M. sextelata often incorporates biochar as a soil amendment to enhance yield, although the underlying physicochemical and ecological mechanisms remain unclear.

View Article and Find Full Text PDF

This study investigates how agricultural disturbance influences arbuscular mycorrhizal (AM) fungal diversity, biomass, and community niche structure. Utilizing niche concepts, we show that the AM fungal communities in intensively managed soils exhibited larger niche volumes and an increased proportion of culturable taxa, which negatively impacted biomass production. This process was primarily driven by the reduction in specialist taxa, indicating a functional homogenization of the community.

View Article and Find Full Text PDF

Microplastics (MPs) are widespread contaminants in agroecosystems, with potential implications for soil microbial communities, plant growth, and crop-weed interactions. This study investigates how MPs of different particle sizes influence crop-weed competition by altering soil microbial communities. Through a controlled greenhouse experiment, we examined the effects of 50 μm and 500 μm polyethylene (PE) MPs on competition between Eruca sativa (crop) and Amaranthus retroflexus (weed).

View Article and Find Full Text PDF

Overcoming tetracycline pollution in soils through the addition of a mycorrhizal fungal species Funneliformis mosseae.

Ecotoxicol Environ Saf

September 2025

Faculty of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia. Electronic address:

The presence of residual antibiotics in the black soils of northeastern China poses a significant threat to food safety. This study investigated the potential of Funneliformis mosseae, one of the predominant biocontrol fungi in northeastern China, to mitigate the negative effects of tetracycline contamination (40 mg kg⁻¹) in soil. Advanced biotechnological methods were employed to assess plant growth, soil microbial antioxidant enzyme activity, and soil fertility.

View Article and Find Full Text PDF