98%
921
2 minutes
20
Breast malignancy remains one of the most common causes of cancer-associated mortalities among women. MicroRNA (miR)-221 and miR-222 are homologous miRs and have a substantial impact on cancer progression. In the present study, the regulatory mechanisms of miR-221/222 and its target annexin A3 (ANXA3) in breast cancer cells were investigated. Breast tissue samples were collected to evaluate the expression patterns of miR-221/222 levels in breast cancer cell lines and cancer tissues according to clinical characteristics. The levels of miR-221/222 were increased or decreased in cancer cell lines compared with normal breast cell lines according to cell line subtype. Subsequently, the changes in the progression and invasion of breast cancer cells were investigated using cell proliferation, invasion assay, gap closure and colony formation assays. Western blotting of cell cycle proteins and flow cytometry were performed to evaluate the possible pathway of miR-221/222 and ANXA3 axis. Chemosensitivity tests were performed to explore the suitability of the miR-221/222 and ANXA3 axis as a therapeutic target in breast cancer. The expression levels of miR-221/222 were associated with aggressive characteristics of breast cancer subtypes. Cell transfection assay demonstrated the regulation of breast cancer proliferation and invasiveness by miR-221/222. MiR-221/222 directly targeted the 3'-untranslated region of ANXA3 and suppressed the expression of ANXA3 at the mRNA and protein levels. In addition, miR-221/222 negatively regulated cell proliferation and the cell cycle pathway in breast cancer cells by targeting ANXA3. In combination with adriamycin, downregulation of ANXA3 may sensitize adriamycin-induced cell death to induction of persistent G/M and G/G arrest. Decreased expression of ANXA3 through increased expression of miR-221/222 reduced breast cancer progression and increased the effectiveness of the chemotherapy drug. The present results indicated the miR-221/222 and ANXA3 axis to be a possible novel therapeutic target for the treatment of breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947582 | PMC |
http://dx.doi.org/10.3892/etm.2023.11826 | DOI Listing |
JAMA Netw Open
September 2025
Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.
Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.
Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.
Obstet Gynecol
July 2025
Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia.
Med Oncol
September 2025
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
Purpose: Breast cancer (BC) is the most frequent cancer among women and the second leading cause of central nervous system (CNS) metastases. While the epidemiology of CNS metastases from BC has been well described, little is known about the treatment patterns and outcomes of young women < 40 years of age with BC that is metastatic to the CNS.
Methods: In this retrospective analysis, we identified patients with metastatic breast cancer (MBC) to the CNS who were treated at the Sunnybrook Odette Cancer Center, Toronto, Canada between 2008 and 2018.