Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biseugenol (1), a neolignan with antiprotozoal activity against Trypanosoma cruzi, was partially methylated, and the compound obtained - methyl biseugenol (2) - had its activity evaluated against the extracellular (trypomastigotes) and intracellular (amastigotes) forms of T. cruzi. It was observed that both compounds 1 and 2 exhibited similar effects against trypomastigotes (IC of 11.7 and 16.2 μM, respectively), whereas compound 2 displayed higher activity against amastigotes (IC = 8.2 μM) in comparison with biseugenol (IC = 15.4 μM). Additionally, reduced toxicity against NCTC cells for compound 2 was observed (CC > 200 μM), differently from compound 1 with CC = 58.0 μM. Aiming to understand better the molecular mechanism of the biological action of compound 2, the prodrug was incorporated into cellular membrane models constituted of Langmuir monolayers of the lipids dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylserine (DPPS), and dipalmitoylphosphatidylglycerol (DPPG). The lipid-drug interaction was inferred through tensiometry, surface potential, infrared spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The prodrug expanded DPPC and DPPG monolayers and condensed DPPE ones, as well as presented characteristic behaviors regarding the chemical structure of the lipid considering expansion-compression curves, surface potential-area isotherms, and stability of previously compressed monolayers to relevant-biological surface pressures. PM-IRRAS indicated a molecular disorder for DPPC and DPPS alkyl chains in the presence of the drug. BAM revealed the presence of domains in the DPPG and DPPE monolayers, which was probably induced by the prodrug. These data suggest, in general, that the lipid composition modulates the interaction of compound 2, whose results are expected to correlate to its trypanocidal activity, which involves the plasma membrane of T. cruzi as the primary target, i.e., the first barrier that the compound should encounter to interact with the microorganism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2023.106975DOI Listing

Publication Analysis

Top Keywords

membrane models
8
compound
7
activity
5
partial o-methylation
4
o-methylation dehydrodieugenol
4
dehydrodieugenol antitrypanosomal
4
antitrypanosomal activity
4
activity correlation
4
correlation toxicity
4
toxicity cell
4

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.

View Article and Find Full Text PDF

Membranes as targets and modifiers of mutant huntingtin aggregation.

Trends Biochem Sci

September 2025

Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA. Electronic address:

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene, resulting in an expanded polyglutamine (polyQ) tract in HTT protein. Expanded polyQ tracts cause mutant HTT (mHTT) to aggregate and accumulate as cellular inclusions. Recent studies highlight the interactions between mHTT and different cellular membranes that contribute to HD pathogenesis.

View Article and Find Full Text PDF

No association between LDL cholesterol levels and cellular membrane integrity assessed with phase angle: Insights from the MALIPID study.

Clin Investig Arterioscler

September 2025

Department of Clinical Dietetics, Medical University of Lublin, ul. Chodzki 7, 20-059 Lublin, Poland. Electronic address:

Background: Although aggressive low-density lipoprotein cholesterol (LDL-C) reduction has demonstrated significant cardiovascular benefits, concerns have emerged regarding potential adverse effects of very low LDL-C on cellular functions, particularly membrane integrity as cholesterol constitutes an essential component of cellular membranes. The phase angle (PhA), derived from bioelectrical impedance analysis (BIA) reflects cellular membranes integrity and nutritional status. The MALIPID study aimed to assess if LDL-C levels are associated with PhA in high cardiovascular risk patients.

View Article and Find Full Text PDF

Nε-lysine acetylation in the lumen of the ER requires two acetyltransferases, ATase1/NAT8B and ATase2/NAT8. They are type II membrane proteins and belong to the larger GNAT superfamily of acetyltransferases. Their enzymatic activity is tightly coupled to the import of acetyl-CoA in the lumen of the ER by AT-1/SLC33A1.

View Article and Find Full Text PDF