The effects of exposure to road traffic noise at school on central auditory pathway functional connectivity.

Environ Res

ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain; PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain. Electronic address:

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As the world becomes more urbanized, more people become exposed to traffic and the risks associated with a higher exposure to road traffic noise increase. Excessive exposure to environmental noise could potentially interfere with functional maturation of the auditory brain in developing individuals. The aim of the present study was to assess the association between exposure to annual average road traffic noise (LAeq) in schools and functional connectivity of key elements of the central auditory pathway in schoolchildren. A total of 229 children from 34 representative schools in the city of Barcelona with ages between 8 and 12 years (49.2% girls) were evaluated. LAeq was obtained as the mean of 2-consecutive day measurements inside classrooms before lessons started following standard procedures to obtain an indicator of long-term road traffic noise levels. A region-of-interest functional connectivity Magnetic Resonance Imaging (MRI) approach was adopted. Functional connectivity maps were generated for the inferior colliculus, medial geniculate body of the thalamus and primary auditory cortex as key levels of the central auditory pathway. Road traffic noise in schools was significantly associated with stronger connectivity between the inferior colliculus and a bilateral thalamic region adjacent to the medial geniculate body, and with stronger connectivity between the medial geniculate body and a bilateral brainstem region adjacent to the inferior colliculus. Such a functional connectivity strengthening effect did not extend to the cerebral cortex. The anatomy of the association implicating subcortical relays suggests that prolonged road traffic noise exposure in developing individuals may accelerate maturation in the basic elements of the auditory pathway. Future research is warranted to establish whether such a faster maturation in early pathway levels may ultimately reduce the developing potential in the whole auditory system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.115574DOI Listing

Publication Analysis

Top Keywords

road traffic
24
traffic noise
24
functional connectivity
20
auditory pathway
16
central auditory
12
inferior colliculus
12
medial geniculate
12
geniculate body
12
exposure road
8
developing individuals
8

Similar Publications

Limited research has examined the relationships of co-exposure to air pollutants, temperature, and road traffic noise with chronic kidney disease (CKD) incidence and the interaction between PM and temperature. To address this gap, the present study explored these associations and interactions in Taiwan. A cohort of 3,041 older individuals (aged ≥55 years) was recruited in 2009 and followed until 2019.

View Article and Find Full Text PDF

Transportation Noise and Cardiovascular Health: Evidence, Mechanisms, and Policy Imperatives.

Anatol J Cardiol

September 2025

Danish Cancer Institute, Danish Cancer Society, Denmark;Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark.

Environmental noise, particularly from road, rail, and aircraft traffic, is now firmly recognized as a widespread risk factor for cardiovascular disease. About 1 in 3 Europeans is exposed to chronic noise exposure above the guideline thresholds recommended by the World Health Organization (WHO), thus contributing substantially to cardiovascular morbidity and mortality. Robust evidence from recent meta-analyses links transportation noise to ischemic heart disease, heart failure, stroke, hypertension, and type 2 diabetes mellitus.

View Article and Find Full Text PDF

Introduction: Charcot neuroarthropathy (CNO) of foot characterised by an increased bone turnover denoted by serological markers of bone resorption. However, histological characteristics of foot bones in people with CNO are not well elucidated.

Methods: The foot bone samples were collected from patients who had either surgical reconstruction or below-knee amputations for chronic CNO foot ( = 10, Group A), unsalvageable diabetic foot ulcer ( = 16, Group B), and non-diabetic healthy controls following road traffic accident ( = 16, group C).

View Article and Find Full Text PDF

Construction and verification of soil heavy metal establishment identification method based on dual-threshold of magnetic susceptibility.

J Hazard Mater

September 2025

Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, College of Forestry & College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China.

Pollutants from industrial emissions and traffic accumulate in urban soils as road dust, carrying heavy metals (HMs) posing ecological and health risks. Magnetic susceptibility (MS), sensitive to ferromagnetic minerals, enables rapid HM contamination assessment. This study developed the Modified Dual-Threshold MS Evaluation Plot for Soil Contamination (M-Plot) using χ and χ% indices.

View Article and Find Full Text PDF

Investigating pedestrian crash injury patterns: A comparative study of children and non-children.

Accid Anal Prev

September 2025

Industrial and Manufacturing Systems Engineering Department, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, 48128, MI, USA; University of Michigan Transportation Research Institute, 2901 Baxter Rd, Ann Arbor, 48109, MI, USA. Electronic address:

Pedestrian injuries remain a public health concern, with child pedestrians being particularly vulnerable due to their unique physical and cognitive characteristics. This study presents a comprehensive analysis comparing injury severity patterns between child (≤14 years) and non-child (>14 years) pedestrians using Lasso logistic regression and advanced machine learning techniques, specifically Catboost with SHAP (SHapley Additive exPlanations) values to interpret the models. By analyzing six years of national crash data from the Crash Report Sampling System (CRSS) from 2016 to 2021, we identify significant factors influencing injury outcomes for both age groups.

View Article and Find Full Text PDF