Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the removal of nitric oxide (NO) by sodium chlorite (NaClO), the NaClO concentration is usually increased, and an alkaline absorbent is added to improve the NO removal efficiency. However, this increases the cost of denitrification. This study is the first to use hydrodynamic cavitation (HC) combined with NaClO for wet denitrification. Under optimal experimental conditions, when 3.0 L of NaClO with a concentration of 1.00 mmol/L was used to treat NO (concentration: 1000 ppmv and flow rate: 1.0 L/min), 100% of nitrogen oxides (NO) could be removed in 8.22 min. Furthermore, the NO removal efficiency remained at 100% over the next 6.92 min. Furthermore, the formation of ClO by NaClO is affected by pH. The initial NO removal efficiency was 84.8-54.8% for initial pH = 4.00-7.00. The initial NO removal efficiency increases as the initial pH decreases. When the initial pH was 3.50, the initial NO removal efficiency reached 100% under the synergistic effect of HC. Therefore, this method enhances the oxidation capacity of NaClO through HC, realizes high-efficiency denitrification with low NaClO concentration (1.00 mmol/L), and has better practicability for the treatment of NO from ships.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959747PMC
http://dx.doi.org/10.3390/ijerph20043684DOI Listing

Publication Analysis

Top Keywords

removal efficiency
20
naclo concentration
12
initial removal
12
hydrodynamic cavitation
8
nitric oxide
8
naclo
8
efficiency increases
8
concentration 100
8
100 mmol/l
8
removal
7

Similar Publications

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF

Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.

View Article and Find Full Text PDF

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF

A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.

View Article and Find Full Text PDF

This study investigated the efficacy of two microalgae treatment systems (Chlorella vulgaris monoculture and a Chlorella vulgaris-S395-2-Clonostachys rosea symbiotic system) in treating aquaculture wastewater, under varying concentrations of synthetic strigolactone analog (GR24). By exposing the systems to four GR24 doses (0, 10, 10, and 10 M), we examined the impact on biomass growth, photosynthesis, and wastewater treatment. Elevated GR24 concentrations bolstered metabolism and photosynthesis in the systems, fostering rapid symbiont growth and enhanced treatment efficiency.

View Article and Find Full Text PDF