Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aminoacyl tRNA synthetases (aaRSs) are a well-studied family of enzymes with a canonical role in charging tRNAs with a specific amino acid. These proteins appear to also have non-canonical roles, including post-transcriptional regulation of mRNA expression. Many aaRSs were found to bind mRNAs and regulate their translation into proteins. However, the mRNA targets, mechanism of interaction, and regulatory consequences of this binding are not fully resolved. Here, we focused on yeast cytosolic threonine tRNA synthetase (ThrRS) to decipher its impact on mRNA binding. Affinity purification of ThrRS with its associated mRNAs followed by transcriptome analysis revealed a preference for mRNAs encoding RNA polymerase subunits. An mRNA that was significantly bound compared to all others was the mRNA encoding RPC10, a small subunit of RNA polymerase III. Structural modeling suggested that this mRNA includes a stem-loop element that is similar to the anti-codon stem loop (ASL) structure of ThrRS cognate tRNA (tRNA). We introduced random mutations within this element and found that almost every change from the normal sequence leads to reduced binding by ThrRS. Furthermore, point mutations at six key positions that abolish the predicted ASL-like structure showed a significant decrease in ThrRS binding with a decrease in RPC10 protein levels. Concomitantly, tRNA levels were reduced in the mutated strain. These data suggest a novel regulatory mechanism in which cellular tRNA levels are regulated through a mimicking element within an RNA polymerase III subunit in a manner that involves the tRNA cognate aaRS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956033PMC
http://dx.doi.org/10.3390/genes14020462DOI Listing

Publication Analysis

Top Keywords

rna polymerase
16
polymerase iii
12
trna levels
12
trna
9
iii subunit
8
cognate trna
8
mrna
6
thrrs
5
thrrs-mediated translation
4
translation regulation
4

Similar Publications

Objective: Leishmaniasis, caused by protozoan parasites of the spp., presents significant global health challenges, with visceral leishmaniasis (VL) and cutaneous leishmaniasis forms causing severe morbidity and mortality. Macrophages serve as primary host cells, where spp.

View Article and Find Full Text PDF

Plasmids are commonly employed in the delivery of clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) components for genome editing. However, the absence of heritable plasmids in numerous organisms limits the development of CRISPR/Cas genome editing tools. Moreover, cumbersome procedures for plasmid construction and curing render genome editing time-consuming.

View Article and Find Full Text PDF

Rejection following liver and kidney transplantation remains a major barrier to long-term graft survival. Early and reliable detection of rejection is crucial for optimizing patient outcomes and guiding personalized therapeutic approaches. Despite ongoing efforts, currently available serum-based biomarkers often fail to provide sufficient sensitivity and specificity for early diagnosis.

View Article and Find Full Text PDF

Application of droplet digital PCR for the detection of fish DNA in food products.

Food Res Int

November 2025

Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy. Electronic address:

Fish is one of the most common causes of food allergy. The global prevalence of fish allergy has increased over the years as a result of the increased fish consumption. In allergic individuals even small amounts of allergen can trigger a life-threatening allergic reaction.

View Article and Find Full Text PDF

Tumor antigen PRAME promotes melanoma growth by inactivating p53 through the SIRT1-DBC1 axis.

Oncogene

September 2025

Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.

Preferentially expressed antigen in melanoma (PRAME), which is highly expressed in melanoma, is associated with tumor progression and malignancy. Notably, melanoma cells often exhibit inactivation of the tumor suppressor p53 despite carrying the wild-type p53 gene. Here, we investigated the functional interplay between PRAME and p53.

View Article and Find Full Text PDF