Publications by authors named "Yoav S Arava"

Fragment-based screening is an efficient method for early-stage drug discovery. In this study, we aimed to create a fragment library optimized for producing high hit rates against RNA targets. RNA has historically been an underexplored target, but recent research suggests potential for optimizing small molecule libraries for RNA binding.

View Article and Find Full Text PDF

Translation regulation and localized translation are essential for protein synthesis, controlling all aspects of cellular function in health and disease [...

View Article and Find Full Text PDF

Aminoacyl tRNA synthetases (aaRSs) are a well-studied family of enzymes with a canonical role in charging tRNAs with a specific amino acid. These proteins appear to also have non-canonical roles, including post-transcriptional regulation of mRNA expression. Many aaRSs were found to bind mRNAs and regulate their translation into proteins.

View Article and Find Full Text PDF

Synthesis of all proteins in eukaryotic cells, apart from a few organellar proteins, is done by cytosolic ribosomes. Many of these ribosomes are localized in the vicinity of the functional site of their encoded protein, enabling local protein synthesis. Studies in various organisms and tissues revealed that such locally translating ribosomes are also present near mitochondria.

View Article and Find Full Text PDF

Nuclear-encoded mitochondrial protein mRNAs have been found to be localized and locally translated within neuronal processes. However, the mechanism of transport for those mRNAs to distal locations is not fully understood. Here, we describe axonal co-transport of Cox7c with mitochondria.

View Article and Find Full Text PDF

A new environmental study has discovered marine phages containing deoxyuridine instead of deoxythymidine in their DNA. The newly isolated viruses are phylogenetically distinct from any currently known double-stranded DNA phages.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) are a conserved family of enzymes with an essential role in protein synthesis: ligating amino acids to cognate tRNA molecules for translation. In addition to their role in tRNA charging, aaRSs have acquired non-canonical functions, including post-transcriptional regulation of mRNA expression. Yet, the extent and mechanisms of these post-transcriptional functions are largely unknown.

View Article and Find Full Text PDF

Recent studies underscore RNA modifications as a novel mechanism to coordinate expression and function of different genes. While modifications on the sugar or base moieties of tRNA are well known, their roles in mRNA regulation are only starting to emerge. Interestingly, some modifications are present in both tRNA and mRNA, and here we discuss the functional significance of these common features.

View Article and Find Full Text PDF

Modification of nucleotides within an mRNA emerges as a key path for gene expression regulation. Pseudouridine is one of the most common RNA modifications; however, only a few mRNA modifiers have been identified to date, and no one mRNA pseudouridine reader is known. Here, we applied a novel genome-wide approach to identify mRNA regions that are bound by yeast methionine aminoacyl tRNAMet synthetase (MetRS).

View Article and Find Full Text PDF

Mitochondria contain a complete translation machinery that is used to translate its internally transcribed mRNAs. This machinery uses a distinct set of tRNAs that are charged with cognate amino acids inside the organelle. Interestingly, charging is executed by aminoacyl tRNA synthetases (aaRS) that are encoded by the nuclear genome, translated in the cytosol, and need to be imported into the mitochondria.

View Article and Find Full Text PDF