98%
921
2 minutes
20
Elaborating on the fate profiling and risk magnitude of butralin during large-scale applications was conducive to agroecosystems sustainability and dietary rationality. Occurrence, dissipation and concentration variation of butralin were elucidated from garlic cultivation to household processing by tracing UHPLC-MS/MS within 2 min, with regard to original depositions, half-lives, and terminal magnitude in typical origins of garlic. The processing factors (Pfs) of butralin were further clarified among washing, stir-frying and pickling of garlic crops, and pickling was the most effective way for butralin removal with a Pf of 0.092. A probabilistic model with Pfs was further introduced for the comprehensive risk estimations, by reduction factors of 3.1-10.9 from raw garlic crops to processed products. The short-term risks of butralin from green garlic were greater than those between garlic shoot and garlic, with the %ARfDs of 0.030 %-6.323 % from 50 to 99.9 percentiles. The long-term risks were inversely correlated to the age of the population, whose location in rural (%ADIs, 0.256 %-0.768 %) suffered more serious exposures than in urban (%ADIs, 0.231 %-0.699 %). High potential risk amplification should be continuously emphasized given the increasing applications and persistent fate of butralin, especially for vulnerable rural children.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162369 | DOI Listing |
RNA Biol
September 2025
Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea.
Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.
View Article and Find Full Text PDFCell
August 2025
Department of Cardiac Surgery, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, School of Life Science and
Early organogenesis is a crucial stage in embryonic development, characterized by extensive cell fate specification to initiate organ formation but also by a high susceptibility to developmental defects. Here, we profiled 285 serial sections from six E7.5-E8.
View Article and Find Full Text PDFBlood Neoplasia
November 2025
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
Chronic myelomonocytic leukemia (CMML) is an aggressive hematologic neoplasm characterized by an expansion of CD123 monocytes and plasmacytoid dendritic cells (pDCs). pDC bone marrow clusters in CMML have been associated with higher rates of acute myeloid leukemia transformation. We evaluated tagraxofusp, a CD123-targeted therapy, in a phase 1/2 trial for patients with CMML.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2025
UMR 1098 RIGHT INSERM/Etablissement Français du Sang Bourgogne Franche-Comté/Université Marie et Louis Pasteur, 25000 Besançon, France.
Despite the clinical success of redirected T cells in the setting of cancer adoptive cell immunotherapy, patients may exhibit resistance to treatment, resulting in uncontrolled disease and relapses. This phenomenon partly relies on impaired -produced T cell metabolic fitness, including a decreased respiratory reserve, as well as a greater sensitivity to tumor-mediated metabolic stress. To improve the respiratory capacity of cultured T cells, we sought to target the nicotinamide adenine dinucleotide/sirtuine-1/reactive oxygen species (ROS) axis through supplementation of culture medium with resveratrol.
View Article and Find Full Text PDFEnviron Sci Process Impacts
September 2025
Department of Chemistry & Chemical Biology, McMaster University, Hamilton, L8S 4M1, Canada.
Microplastics are ubiquitous in the environment, accumulate hydrophobic organic contaminants, and suppress the photodegradative loss of these contaminants. Thus, they have the potential to act as vectors for contaminant uptake by organisms and transport to remote regions. Our current understanding of microplastic-sorbed contaminant photodegradation is drawn from experiments with unpigmented microplastics, but the interaction of pigments with light may alter the loss and corresponding persistence of sorbed contaminants.
View Article and Find Full Text PDF