98%
921
2 minutes
20
The pathogens that cause most emerging infectious diseases in humans originate in animals, particularly wildlife, and then spill over into humans. The accelerating frequency with which humans and domestic animals encounter wildlife because of activities such as land-use change, animal husbandry, and markets and trade in live wildlife has created growing opportunities for pathogen spillover. The risk of pathogen spillover and early disease spread among domestic animals and humans, however, can be reduced by stopping the clearing and degradation of tropical and subtropical forests, improving health and economic security of communities living in emerging infectious disease hotspots, enhancing biosecurity in animal husbandry, shutting down or strictly regulating wildlife markets and trade, and expanding pathogen surveillance. We summarize expert opinions on how to implement these goals to prevent outbreaks, epidemics, and pandemics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973692 | PMC |
http://dx.doi.org/10.3201/eid2903.221079 | DOI Listing |
Wellcome Open Res
August 2025
Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA.
Arenaviruses and Hantaviruses, primarily hosted by rodents and shrews, represent significant public health threats due to their potential for zoonotic spillover into human populations. Despite their global distribution, the full impact of these viruses on human health remains poorly understood, particularly in regions like Africa, where data is sparse. Both virus families continue to emerge, with pathogen evolution and spillover driven by anthropogenic factors such as land use change, climate change, and biodiversity loss.
View Article and Find Full Text PDFJ R Soc Interface
September 2025
UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK.
Severe fever with thrombocytopaenia syndrome virus (SFTSV) was identified by the World Health Organization as a priority pathogen due to its high case-fatality rate in humans and rapid spread. It is maintained in nature through three transmission pathways: systemic, non-systemic and transovarial. Understanding the relative contributions of these transmission pathways is crucial for developing evidence-informed public health interventions to reduce its spillover risks to humans.
View Article and Find Full Text PDFOne Health
December 2025
U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD 20708, USA.
With the continued spread of highly pathogenic avian influenza (HPAI), understanding the complex dynamics of virus transfer at the wild - agriculture interface is paramount. Spillover events (i.e.
View Article and Find Full Text PDFVirol Sin
September 2025
State Key Laboratory of Virology and Biosafety, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University, Wuhan, 430071, China.
Since the outbreak of SARS-CoV-2 in late 2019, the cumulative number of confirmed cases worldwide has surpassed 778 million, and the number of deaths has exceeded 7 million, posing a significant threat to human life and health while inflicting enormous losses on the global economy. At the stage where sequential immunization is recommended, there is a pressing demand for mRNA vaccines that can be rapidly adapted to new sequences, are easy to industrialize, and exhibit high safety and effectiveness. We developed a lipid nanoparticle (LNP) system, designated as WNP, which facilitates essentially in situ expression at the injection site and results in lower levels of pro-inflammatory factors in the liver, thus enhancing its safety compared to liver-targeted alternatives.
View Article and Find Full Text PDFmedRxiv
August 2025
Department of Molecular Biology, Princeton University, Princeton, NJ 08544.
Avian influenza viruses (AIVs) are zoonotic pathogens that pose an increasing global threat due to their potential for significant economic losses in agriculture, spillover into humans, and the risk of a pandemic should human-to-human transmission occur. These concerns underscore the need for rapid, sensitive and specific tools to detect and differentiate circulating AIV subtypes and clades. Current AIV diagnostic methods rely on specialized equipment and trained personnel, limiting their use in the field and in low-resource settings.
View Article and Find Full Text PDF