Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is an ever-increasing body of evidence that metallic complexes involving amphiliphic ligands do not form normal solutions in organic solvents. Instead, they form complex fluids with intricate structures. For example, the metallic complexes may aggregate into clusters, and these clusters themselves may aggregate into superclusters. To gain a deeper insight into the mechanisms at play, we have used an improved force field to conduct extensive molecular dynamics simulations of a system composed of zirconium nitrate, water, nitric acid, tri--butyl phosphate, and -octane. The important new finding is that a dynamic equilibrium between the cis and trans isomers of the metal complex is likely to play a key role in the aggregation behavior. The isolated cis and trans isomers have similar energies, but simulation indicates that the clusters consist predominantly of cis isomers. With increasing metal concentration, we hypothesize that more clustering occurs and the chemical equilibrium shifts toward the cis isomer. It is possible that such isomeric effects play a role in the liquid-liquid extraction of other species and the inclusion of such effects in flow sheet modeling may lead to a better description of the process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009746PMC
http://dx.doi.org/10.1021/acs.jpcb.2c07527DOI Listing

Publication Analysis

Top Keywords

metallic complexes
8
cis trans
8
trans isomers
8
hierarchical aggregation
4
aggregation complex
4
complex fluid─the
4
fluid─the role
4
role isomeric
4
isomeric interconversion
4
interconversion ever-increasing
4

Similar Publications

Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.

View Article and Find Full Text PDF

The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.

View Article and Find Full Text PDF

Significantly enhanced effects of heavy metals on the toxicity, bioconcentration and biomagnification under combined exposure.

Comp Biochem Physiol C Toxicol Pharmacol

September 2025

Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.

Heavy metal (HM) co-contamination is prevalent in the aquatic ecosystems and often induces complex combined effects such as synergism or antagonism, bioconcentration and biomagnification on the food-chain organisms, which is threatening the survival of living creatures and even to human health. However, the combined effects of HMs under combined exposure on the aquatic food chains still remain poorly understood. Therefore, toxic responses, bioconcentration and biomagnification of four typical HMs, lead (Pb), cadmium (Cd), nickel (Ni) and zinc (Zn), were systematically investigated under different combined exposure conditions.

View Article and Find Full Text PDF

With the acceleration of global industrialization, a large amount of polluted wastewater is discharged indiscriminately, which both pollutes the environment and threatens human health. In this study, by constructing a binary system of unsaturated polyester resin/carboxychitosan, and improving the inherent defects of carboxychitosan aerogel, we successfully prepared aerogels with high porosity, low density, and laminar porous structure for water remediation by using a combination of the sol-gel method and directional freezing technology. Thanks to the synergistic effect of surface wettability and special pore structure, the aerogel not only adsorbs and separates MB and Pb(II) efficiently with a separation efficiency of more than 99 %, but also has a separation efficiency of 99.

View Article and Find Full Text PDF

Engineered plasmonic copper (II) sulfide-wrapped polystyrene nanoparticles for spectroscopic detection of mercury ions.

J Hazard Mater

September 2025

Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

We report a novel and highly effective UV-Vis sensing platform based on plasmonic copper (II) sulfide-capsulated polystyrene nanoparticles (PS@CuS NPs) for the rapid, ultrasensitive, and selective detection of Hg . The detection mechanism is driven by a specific anion-exchange reaction between Hg and CuS, resulting in the in-situ transformation of plasmonic CuS into non-plasmonic HgS, which induces a distinct and quantifiable shift in UV-Vis absorption. This structural and optical evolution enables the platform to achieve an exceptionally low detection limit of 20 pM within just 5 min, far below most regulatory thresholds, and a wide linear detection range from 20 pM to 30 nM.

View Article and Find Full Text PDF