Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Multiple sclerosis (MS) is characterized by inflammation, demyelination and axonal degeneration. Oxidative stress (OS) plays a significant role in the pathogenesis of the disease. The aim of the study was to examine the association between OS and smoking on the MS development.

Methods: The study included 175 patients with relapsing-remitting multiple sclerosis (RRMS) (76 males, 99 females) and 254 healthy subjects (81 males and 173 females). Oxidative stress biomarkers in serum, Total Antioxidant Status (TAS) and Total Oxidative Status (TOS) were determined spectrophotometrically. Oxidative Stress Index (OSI) was calculated as the ratio of TOS and TAS. Urinary 8-oxo7,8-dihydro-2'-deoxyguanosine were determined by HPLC-MS/MS and expressed as 8-oxodG/creatinine.

Results: In females with RRMS were higher TOS, OSI and 8-oxodG/creatinine than in females in control group. The group of males with RRMS had lower level of TAS than the males in control group. Higher levels of 8-oxodG/creatinine was obtained in active, passive and former smokers with RRMS than in control group with the same exposition to tobacco smoke. Independent predictors of MS are passive smoking, increased OSI and increased levels of urinary 8-oxodG/creatinine.

Conclusions: Our results demonstrate that the OS parameters should be included in the assessment of the risk for MS development. Due to the more sensitivity to oxidative stress, females may be at higher risk of MS development. This data indicates the importance of introducing the antioxidant therapy as a complementary treatment in patients with RRMS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920994PMC
http://dx.doi.org/10.5937/jomb0-37546DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
multiple sclerosis
12
control group
12
risk development
8
oxidative
6
rrms
5
females
5
oxidative stress-related
4
stress-related risk
4
risk multiple
4

Similar Publications

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF