Surface energy partitioning and evapotranspiration in a plantation in Northeast China.

Front Plant Sci

Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Examining the land-atmosphere interaction in vegetation rehabilitation areas is important for better understanding of land surface processes affected by human activities. In this study, energy flux observations were used to investigate surface energy partitioning and evapotranspiration (ET) in a plantation in Northeast China in 2020 and 2021. The sensible heat flux (H) was the dominant component of R, and the ratio of H to the latent heat flux was higher than 1 at all growth stages. The two most important factors influencing the midday evaporative fraction and daily ET were the normalized difference vegetation index (NDVI) and soil water content at 10 cm depth (SWC). Cumulative precipitation (P) minus ET was 62.83 and 239.90 mm in 2020 (annual P of 435.2 mm) and 2021 (annual P of 632.8 mm), respectively. The midday Priestley-Taylor coefficient (α), surface conductance (g), and decoupling coefficient increased gradually from the onset of the mid-growing stage and decreased from the later growing stage. Midday α and g increased with NDVI and SWC increasing until the NDVI (0.5) and SWC (0.17 mm mm) thresholds were reached, respectively. Midday α and g were significantly influenced by vapor pressure deficit below 3 kPa, and the threshold value of midday g was approximately 12 mm s. In conclusion, this plantation regulated surface energy partitioning properly, and left a part of P for surface runoff and groundwater recharge in the semiarid region of Northeast China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935938PMC
http://dx.doi.org/10.3389/fpls.2023.1048828DOI Listing

Publication Analysis

Top Keywords

surface energy
12
energy partitioning
12
northeast china
12
partitioning evapotranspiration
8
evapotranspiration plantation
8
plantation northeast
8
heat flux
8
ndvi swc
8
surface
6
midday
5

Similar Publications

CuCo-Layered Double Hydroxide Nanosheets Grown on Hierarchical Carbonized Wood as Bifunctional Electrode for Supercapacitor and Hydrogen Evolution Reaction.

Adv Sci (Weinh)

September 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.

View Article and Find Full Text PDF

In the stable cone-jet regime, liquid usually presents the shape of a cone extended by a jet at its apex, with jet breakup yielding fine drops. The dynamics of the Taylor cone critically affect the stability of the jet and further determine the jet and/or drop size. In the present work, the morphology of the Taylor cone, cone length, and cone angle were studied through experimental and numerical means, where the operating parameters and liquid properties are considered.

View Article and Find Full Text PDF

Self-Transformation of 2D SnSe Nanosheets into SnO/Se Nanocomposites for Efficient Photodetection.

ACS Appl Mater Interfaces

September 2025

School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong518055, China.

The rapid development of liquid exfoliation technology has boosted fundamental research and applications of ultrathin two-dimensional (2D) materials. However, the small-sized exfoliated 2D materials with a high specific surface area may exhibit poor chemical stability. Understanding the stability of 2D crystals will be significant for their preservation and service and for the development of new stable phases via the spontaneous transition from unstable structures.

View Article and Find Full Text PDF

Is high specific surface area essential for anode catalyst supports in proton exchange membrane water electrolysis?

Mater Horiz

September 2025

New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Dispersing iridium onto high-specific-surface-area supports is a widely adopted strategy to maximize iridium utilization in anode catalysts of proton exchange membrane water electrolysis (PEMWE). However, here we demonstrate that the overall cell performance, including initial efficiency and long-term stability, does not benefit from the typical high specific surface area of catalyst supports. The conventional understanding that high iridium utilization on high-specific-surface-area supports increases activity holds only in aqueous electrolytes, while under the typical working conditions of PEMWE, the mass transport within the anode catalyst layers plays a more significant role in the overall performance.

View Article and Find Full Text PDF

Antiferroelectric SnO Network with Amorphous Surface for Electrochemical N Fixation.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China.

Electrochemical nitrogen fixation-a sustainable pathway for converting abundant N into NH using renewable energy-holds transformative potential for revolutionizing artificial nitrogen cycles. Nevertheless, even the state-of-the-art catalytic systems also suffer from inadequate N adsorption capacity, which critically limits ammonia production rates and Faradaic efficiency (FE). To overcome this bottleneck, we strategically leveraged the antiferroelectric properties of SnO to establish dipole-dipole interactions with N molecules, synergistically enhancing both N adsorption and activation kinetics.

View Article and Find Full Text PDF