98%
921
2 minutes
20
Human pluripotent stem cells (hPSCs) can give rise to a vast array of differentiated derivatives, which have gained great attention in the field of toxicity evaluation. We have previously demonstrated that hPSC-derived alveolar epithelial cells (AECs) are phenotypically and functionally similar to primary AECs and could be more biologically relevant alternatives for assessing the potential toxic materials including in fine dust and cigarette smoking. Therefore, in this study, we employed hPSC-AECs to evaluate their responses to exposure of various concentrations of diesel particulate matter (dPM), cigarette smoke extract (CSE) and nicotine for 48 hrs in terms of cell death, inflammation, and oxidative stress. We found that all of these toxic materials significantly upregulated the transcription of pro-inflammatory cytokines such as , , , and . Furthermore, the exposure of dPM (100 μg/mL) strongly induced upregulation of genes related with cell death, inflammation, and oxidative stress compared with other concentrations of CSE and nicotine. These results suggest that hPSC-AECs could be a robust platform to evaluate pulmotoxicity of various air pollutants and harmful chemicals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925186 | PMC |
http://dx.doi.org/10.12717/DR.2022.26.4.155 | DOI Listing |
J Clin Invest
September 2025
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.
Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).
View Article and Find Full Text PDFSci Rep
September 2025
Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
If iPS cells can be established easily and efficiently using freshly collected blood cells, it will enhance regenerative and personalized medicine. While reports of iPS derivation from blood-derived endothelial progenitor cells using RNA have been documented, none have been reported from peripheral blood-derived mononuclear cells (PBMCs). In this study, we established a method to generate iPS cells from PBMCs using synthetic RNAs and found that MDM4, which suppresses p53, improved reprogramming efficiency.
View Article and Find Full Text PDF