Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Real-time virtual sonography (RVS) is an artificial-intelligence-assisted ultrasonographic navigation system that displays synchronized preoperative computed tomography (CT) images corresponding to real-time intraoperative ultrasonograms (IOUS). This study aimed to investigate whether RVS can enhance IOUS identification of small intrahepatic targets found in preoperative CT.

Methods: Patients with small intrahepatic targets detected by preoperative thin-slice dynamic CT before liver resection were included. The targets included millimeter-sized liver tumors or a third-order or more distal portal branch and were marked on CT images using 3D simulation software. After laparotomy, the targets were searched using fundamental IOUS, and participating liver surgeons subjectively scored the target identifying confidence on a scale of 1-5 (5 points for detection with the highest confidence and one point for undetectable). Then, the search procedure was repeated using the RVS, and the scores were compared.

Results: Totally, 55 patients with 117 small targets were investigated. The median target size was 6.0 mm, and the median registration time was 3.6 seconds. The target identification confidence score significantly increased from 2.78 to 4.52 points after using RVS. Seventeen targets (14.5%) were undetectable in fundamental IOUS, and 14 of them were identified by RVS. The detectability of small liver tumors (2-5 points of identification confidence) by IOUS was 81.1 and 96.7% by RVS.

Conclusion: RVS enhanced surgeons' confidence in identifying millimeter-sized intrahepatic targets found in preoperative CT.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jum.16199DOI Listing

Publication Analysis

Top Keywords

intrahepatic targets
16
millimeter-sized intrahepatic
8
targets
8
real-time virtual
8
virtual sonography
8
small intrahepatic
8
targets preoperative
8
liver tumors
8
fundamental ious
8
identification confidence
8

Similar Publications

This case report presents a complex case of acute cholecystitis, cholangitis, pancreatitis, intrahepatic abscesses, and sepsis without biliary obstruction, highlighting the challenges of managing multi-organ involvement in a critically ill individual. The patient, a middle-aged male, presented with fever, jaundice, and abdominal pain, with imaging revealing biliary ductal dilation, a distended gallbladder, and a staghorn calculus. Laboratory findings showed elevated liver enzymes, bilirubin, and lipase, supporting the diagnosis of acute cholecystitis, cholangitis, and pancreatitis.

View Article and Find Full Text PDF

Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.

View Article and Find Full Text PDF

Coexistence of bullous pemphigoid, intrahepatic cholangiocarcinoma, and alopecia areata: a case report of multifactorial autoimmunity in a surgical context.

Front Immunol

September 2025

Department of Dermatology, The National Center for the Integration of Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China.

Background: Bullous Pemphigoid (BP) is caused by a predominantly Th2-mediated attack on the basement membrane by the production of anti-BP180 and anti-BP230 antibodies. Malignant tumors can exacerbate immune disorders through a variety of potential pathways, including pro-inflammatory responses in the tumor microenvironment, cross-immune responses induced by tumor-associated antigens, and the lifting of immunosuppressive states and activation of underlying autoimmune responses after surgery. Alopecia Areata (AA) is an autoimmune disease caused by T-lymphocyte-mediated destruction of the immune privilege of the hair follicle, specifically involving the immune axes of Th1, Th2 and Th17.

View Article and Find Full Text PDF

10P3Me: A GPC3-Targeted Peptide PET Probe for Subcutaneous and Orthotopic HCC Imaging.

J Med Chem

September 2025

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.

Hepatocellular carcinoma (HCC) remains a growing global health threat, necessitating the development of precise molecular probes for its prevention, early diagnosis, and treatment. Glypican-3 (GPC3) is highly expressed in various HCC subtypes and exhibits minimal expression in normal liver tissue, making it a promising biomarker for early-stage HCC diagnosis. Herein, we report a novel cyclic peptide molecular probe, 10P3Me, exhibiting high binding affinity for GPC3, with a of 93.

View Article and Find Full Text PDF

Ultrasound-Activated Piezoelectric Nanoparticles Targeting and Activating NK Cells for Tumor Immunotherapy.

Adv Mater

September 2025

Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Shandong University, Jinan, Shandong, 250012, China.

Natural killer (NK) cells can swiftly and efficiently kill tumor cells with low toxicity and show great potential as anticancer agents. However, the hostile tumor microenvironment (TME) reduces the number and functionality of NK cells, leading to tumor progression and the limited therapeutic effect of adoptively transferred NK cells, especially in solid tumors. Here, via mussel-inspired chemistry and targeted antibody modification strategies, functional piezoelectric nanoparticles are designed to target NK cells, named as αCD56-P@BT (for human) or αNK1.

View Article and Find Full Text PDF