Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In Brief: Hypoxia is vital for the establishment of the maternal-fetal interface during early pregnancy. This study shows that decidual macrophages (dMφ) could be recruited and reside in decidua under the regulation of hypoxia/VEGFA-CCL2 axis.

Abstract: Infiltration and residence of decidual macrophages (dMφ) are of great significance to pregnancy maintenance for their role in angiogenesis, placental development, and inducing immune tolerance. Besides, hypoxia has now been acknowledged as an important biological event at maternal-fetal interface in the first trimester. However, whether and how hypoxia regulates biofunctions of dMφ remain elusive. Herein, we observed increased expression of C-C motif chemokine ligand 2 (CCL2) and residence of macrophages in decidua compared to secretory-phase endometrium. Moreover, hypoxia treatment on stromal cells improved the migration and adhesion of dMφ. Mechanistically, these effects might be mediated by upregulated CCL2 and adhesion molecules (especially ICAM2 and ICAM5) on stromal cells in the presence of endogenous vascular endothelial growth factor-A (VEGFA) in hypoxia. These findings were also verified by recombinant VEGFA and indirect coculture, indicating that the interaction between stromal cells and dMφ in hypoxia condition may facilitate dMφ recruitment and residence. In conclusion, VEGFA derived from a hypoxic environment may manipulate CCL2/CCR2 and adhesion molecules to enhance the interactions between dMφ and stromal cells and thus contribute to the enrichment of macrophages in decidua early during normal pregnancy.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-22-0473DOI Listing

Publication Analysis

Top Keywords

stromal cells
16
normal pregnancy
8
maternal-fetal interface
8
decidual macrophages
8
macrophages dmφ
8
macrophages decidua
8
adhesion molecules
8
dmφ
7
hypoxia
6
hypoxia-mediated chemotaxis
4

Similar Publications

Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.

View Article and Find Full Text PDF

MHC compatibility influences the interaction between different types of equine mesenchymal stem/stromal cells and the local immune response.

Res Vet Sci

September 2025

Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS) - Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain; Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain. El

The allogeneic administration of equine mesenchymal stem/stromal cells (MSCs) has numerous advantages over autologous therapy, but their interactions with the patient's immune system need to be further elucidated. These interactions can be influenced by factors such as the compatibility between donor-receptor for the major histocompatibility complex (MHC) and by the MHC expression levels, which can change under different conditions like inflammatory exposure and chondrogeneic differentiation. In this study, we evaluated the local immune response induced by chondrogeneically differentiated (MSC-chondro), pro-inflammatory primed (MSC-primed) and basal (MSC-naïve) MSCs, and how this response changes the immunomodulatory and immunogenic profiles of MSCs in vivo.

View Article and Find Full Text PDF

Effects of dermal-fibroblast-derived ECM and dextran sulfate supplementation on osteoblast differentiation - results of a preliminary in vitro study.

Injury

August 2025

Department of Trauma Surgery, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Center for Preclinical Development, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland. Electronic address:

Background: Critical size bone defects represent a clinical challenge, associated with considerable morbidity, and frequently trigger the requirement of secondary procedure. To fill osseous gaps, multiple steps are required, such as proliferation and differentiation on the cellular level and the building of extracellular matrix. In addition, the osteogenic potential of cell-derived extracellular matrices (CD-ECM) is known to enhance bone healing.

View Article and Find Full Text PDF

Remodeling the sarcoma microenvironment by simultaneous targeting of urokinase-type plasminogen activator receptors and epidermal growth factor receptors to promote antitumor activity.

J Pharmacol Exp Ther

August 2025

Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Center for Immunology

We evaluated the antitumor effects of remodeling the MC17 mouse sarcoma microenvironment (SME) by targeting urokinase-type plasminogen activator receptor (uPAR)- and epidermal growth factor receptor (EGFR)-expressing cells. Specifically, we used eBAT (a bispecific ligand-targeted toxin directed to EGFR and uPAR), and its mouse counterpart, meBAT, to ablate uPAR- and/or EGFR-expressing cells. We chose the MC17 model because the cells are resistant to eBAT, allowing us to exclusively evaluate the role of uPAR- and EGFR-expressing cells in the SME.

View Article and Find Full Text PDF

It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.

View Article and Find Full Text PDF