98%
921
2 minutes
20
Bacterial cellulose (BC) with good biocompatibility and superior mechanical properties has broad applications. BC functionalized with silver nanoparticles (AgNPs) has been assessed as an antimicrobial membrane for wound-healing treatment. During the AgNPs synthesis, avoiding the use of toxic chemicals is very necessary for the development of environmentally friendly procedures. Herein, a Komagataeibacter xylinus-based direct biosynthetic method to fabricate D-Saccharic acid potassium salt (SA)-grafted BC (SABC) through in situ bacterial metabolism was firstly explored. Subsequently, the SABC pellicles were immersed in AgNO solution for ion-exchanged process, and the silver nanoparticles (AgNPs) with diameter of ∼25.2 nm were in situ synthesized on SABC nanofiber surfaces by thermal reduction instead of using a reducing agent. The morphology and microstructure of SABC/AgNPs pellicles were analyzed by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectra. Moreover, antibacterial activity measurement performed against the Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) by disk diffusion and plate count methods, showed high-efficiency bacteria-killing performance of SABC/AgNPs pellicles. This work proposed a new method by using microbial metabolism to prepare BC pellicles with functional groups, and antimicrobial films containing AgNPs was prepared by thermal reduction, exhibiting valuable prospects in wound healing treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.123739 | DOI Listing |
Langmuir
September 2025
Federal University of São Paulo, Laboratory of Hybrid Materials, Diadema, São Paulo 09913-030, Brazil.
This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh.
Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.
Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.
Naturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
September 2025
Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran;
Asthma, a respiratory tract disease, is characterized by inflammation and obstruction of airway. Inflammatory cells play a significant role in allergic asthma, and there is no complete cure for asthma. One of the new approaches in medicines is nanoparticle-base treatment.
View Article and Find Full Text PDFClin Exp Dent Res
October 2025
Laboratory of Experimental Physiopathology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina state, Brazil.
Objectives: This study aimed to compare the effects of silver nanoparticles (AgNPs) synthesized with Curcumin (Curcuma longa L.) or Açai (Euterpe oleracea) versus a commercial treatment and photobiomodulation in rat palatal wounds.
Methods: In vitro cell viability tests assessed nanoparticle toxicity.