98%
921
2 minutes
20
Loss-of-function variants in CHAMP1 were recently described as cause of a neurodevelopmental disorder characterized by intellectual disability (ID), autism, and distinctive facial characteristics. By exome sequencing (ES), we identified a truncating variant in CHAMP1, c.1858A > T (p.Lys620*), in a patient who exhibited a similar phenotype of severe ID and dysmorphisms. Whether haploinsufficiency or a dominant negative effect is the underlying pathomechanism in these cases is a question that still needs to be addressed. By array-CGH, we detected a 194 kb deletion in 13q34 encompassing CHAMP1, CDC16 and UPF3, in another patient who presented with borderline neurodevelopmental impairment and with no dysmorphisms. In a further patient suffering from early onset refractory seizures, we detected by ES a missense variant in CHAMP1, c.67 G > A (p.Gly23Ser). Genomic abnormalities were all de novo in our patients. We reviewed the clinical and the genetic data of patients reported in the literature with: loss-of-function variants in CHAMP1 (total 40); chromosome 13q34 deletions ranging from 1.1 to 4 Mb (total 7) and of the unique patient with a missense variant. We could infer that loss-of-function variants in CHAMP1 cause a homogeneous phenotype with severe ID, autism spectrum disorders (ASD) and highly distinctive facial characteristics through a dominant negative effect. CHAMP1 haploinsufficiency results in borderline ID with negligible consequences on the quality of life. Missense variants give rise to a severe epileptic encephalopathy through gain-of-function mechanism, most likely. We tentatively define for the first time distinct categories among the CHAMP1-related disorder on the basis of pathomechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250409 | PMC |
http://dx.doi.org/10.1038/s41431-023-01305-z | DOI Listing |
Front Neurol
August 2025
Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Introduction: Chorea-acanthocytosis (ChAc) is the most common subtype of neuroacanthocytosis (NA) caused by mutations in VPS13A (vacuole protein sorting-associated protein 13A). ChAc is characterized by the presence of spherocytes and neurological symptoms. This article reports two families with ChAc and summarizes some suggestive characteristics, providing an effective basis for clinicians to screen ChAc in the early stage and effectively reduce the misdiagnosis and missed diagnosis of this disease.
View Article and Find Full Text PDFJ Rare Dis (Berlin)
September 2025
Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
is gene that encodes one of the cytochrome P450 superfamily enzymes involved in the breakdown of 1,25-dihydroxyvitamin D3. Genetic variants in lead to a range of phenotypical and biochemical presentations, including idiopathic infantile hypercalcemia, elevated concentrations of 1,25 dihydroxy vitamin D, adult onset nephrocalcinosis, hypercalciuria, hypercalcemia and nephrolithiasis. Here we present an adult female, aged 68 years of age who presented with intermittent abdominal pain, with a past medical history of hypertension.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
CERVO Brain Research Centre, Quebec City, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada. Electronic address:
Brugada syndrome is a rare inherited cardiac arrhythmia disorder primarily characterized by ventricular fibrillation, which can lead to sudden cardiac death. It follows an autosomal dominant pattern of inheritance and is most associated with dysfunction of the cardiac sodium channel Nav1.5.
View Article and Find Full Text PDFHeterozygous loss-of-function mutations are one established cause of isolated dystonia and hyposmia. Homozygous mutations have been reported in siblings with generalized dystonia and intellectual disability. encodes major [NM_001369387.
View Article and Find Full Text PDFBackground Over 300 mutations in have been identified as causes of early-onset Alzheimer's disease (EOAD). While these include missense mutations and a few insertions, deletions, or duplications, none result in open reading frame shifts, and all alter γ-secretase function to increase the long/short Aβ ratio. Methods We identified a novel heterozygous nonsense variant, c.
View Article and Find Full Text PDF