98%
921
2 minutes
20
Optical activity (OA) spectroscopy is a powerful tool to characterize molecular chirality, explore the stereo-specific structure and study the solution-state conformation of biomolecules, which is widely utilized in the fields of molecular chirality, pharmaceutics and analytical chemistry. Due to the considerably weak effect, OA spectral analysis has high demands on measurement speed and sensitivity, especially for organic biomolecules. Moreover, gas-phase OA measurements require higher resolution to resolve Doppler-limited profiles. Here, we show the unmatched potential of dual-comb spectroscopy (DCS) in magnetic optical activity spectroscopy (MOAS) of gas-phase molecules with the resolution of hundred-MHz level and the high-speed measurement of sub-millisecond level. As a demonstration, we achieved the rapid, high-precision and high-resolution MOAS measurement of the nitrogen dioxide [Formula: see text]+[Formula: see text] band and the nitric oxide overtone band, which can be used to analyze fine structure of molecules. Besides, the preliminary demonstration of liquid-phase chiroptical activity (as weak as 10) has been achieved with several seconds of sampling time, which could become a routine approach enabling ultrafast dynamics analysis of chiral structural conformations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935641 | PMC |
http://dx.doi.org/10.1038/s41467-023-36509-w | DOI Listing |
J Am Chem Soc
September 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University.
Diabetic retinopathy (DR) remains a leading cause of preventable blindness worldwide, with the affected population projected to reach 270 million by 2045. Our study analyzed 2 434 interventional trials registered between 2007 and 2024 in the Informa Pharma Intelligence database and found that anti-VEGF agents dominate the therapeutic landscape-bevacizumab represents 24.0 % of studies, ranibizumab 15.
View Article and Find Full Text PDFIEEE Nanotechnol Mater Devices Conf
October 2024
PacTech USA Inc., Santa Clara, CA 95050 USA.
Nanoparticles exhibit optical and infrared sensitivity useful in optoelectronics, spectroscopy, and sensing. Capacitative and conductive coupling induces dipolar and charge transfer plasmon modes in nanoscale dimers. Optical and infrared activity of these hybridized modes are exquisitely sensitive to geometric features of the nanoscale dimer.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Ce-doped cobalt boride (Ce-CoB) was synthesized a ZIF-67-derived boridation strategy, where Ce incorporation synergistically tunes the electronic structure to accelerate oxygen evolution kinetics. The Ce-CoB achieves an overpotential of 320 mV at 10 mA cm, outperforming benchmark CoB by 15.8% ( 350 mV) with remarkable robustness.
View Article and Find Full Text PDF