Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: To construct a radiomic model of low-dose CT (LDCT) to predict the differentiation grade of invasive non-mucinous pulmonary adenocarcinoma (IPA) and compare its diagnostic performance with quantitative-semantic model and radiologists.

Methods: A total of 682 pulmonary nodules were divided into the primary cohort (181 grade 1; 254 grade 2; 64 grade 3) and validation cohort (69 grade 1; 99 grade 2; 15 grade 3) according to scanners. The radiomic and quantitative-semantic models were built using ordinal logistic regression. The diagnostic performance of the models and radiologists was assessed by the area under the curve (AUC) of the receiver operating characteristic curve and accuracy.

Results: The radiomic model demonstrated excellent diagnostic performance in the validation cohort (AUC, 0.900 (95%CI: 0.847-0.939) for Grade 1 vs. Grade 2/Grade 3; AUC, 0.929 (95%CI: 0.882-0.962) for Grade 1/Grade 2 vs. Grade 3; accuracy, 0.803 (95%CI: 0.737-0.857)). No significant difference in diagnostic performance was found between the radiomic model and radiological expert (AUC, 0.840 (95%CI: 0.779-0.890) for Grade 1 vs. Grade 2/Grade 3, p = 0.130; AUC, 0.852 (95%CI: 0.793-0.900) for Grade 1/Grade 2 vs. Grade 3, p = 0.170; accuracy, 0.743 (95%CI: 0.673-0.804), p = 0.079), but the radiomic model outperformed the quantitative-semantic model and inexperienced radiologists (all p < 0.05).

Conclusions: The radiomic model of LDCT can be used to predict the differentiation grade of IPA in lung cancer screening, and its diagnostic performance is comparable to that of radiological expert.

Key Points: • Early identifying the novel differentiation grade of invasive non-mucinous pulmonary adenocarcinoma may provide guidance for further surveillance, surgical strategy, or more adjuvant treatment. • The diagnostic performance of the radiomic model is comparable to that of a radiological expert and superior to that of the quantitative-semantic model and inexperienced radiologists. • The radiomic model of low-dose CT can be used to predict the differentiation grade of invasive non-mucinous pulmonary adenocarcinoma in lung cancer screening.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-023-09453-yDOI Listing

Publication Analysis

Top Keywords

radiomic model
20
grade grade
20
grade
16
diagnostic performance
16
predict differentiation
8
differentiation grade
8
grade invasive
8
invasive non-mucinous
8
non-mucinous pulmonary
8
pulmonary adenocarcinoma
8

Similar Publications

The barriers for uptake of artificial intelligence in hepatology and how to overcome them.

J Hepatol

July 2025

Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany; Department of Medicine I, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; Medical Oncology, National Center for Tumor Disease

Artificial intelligence (AI) methods in hepatology have proliferated since the mid-2010s, with numerous publications and some regulatory approvals. Yet, adoption of AI methods in real-world clinical practice and clinical research remains limited. Despite clear benefits of using AI to analyze complex data types in hepatology, such as histopathology, radiology images, multi-omics and more recently, natural language patient data, there are still substantial barriers and challenges to its integration into routine clinical workflows.

View Article and Find Full Text PDF

Purpose: To develop and validate an integrated model based on MR high-resolution vessel wall imaging (HR-VWI) radiomics and clinical features to preoperatively assess periprocedural complications (PC) risk in patients with intracranial atherosclerotic disease (ICAD) undergoing percutaneous transluminal angioplasty and stenting (PTAS).

Methods: This multicenter retrospective study enrolled 601 PTAS patients (PC+, n = 84; PC -, n = 517) from three centers. Patients were divided into training (n = 336), validation (n = 144), and test (n = 121) cohorts.

View Article and Find Full Text PDF

Objective: The aim of this study is to evaluate the prognostic performance of a nomogram integrating clinical parameters with deep learning radiomics (DLRN) features derived from ultrasound and multi-sequence magnetic resonance imaging (MRI) for predicting survival, recurrence, and metastasis in patients diagnosed with triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC).

Methods: This retrospective, multicenter study included 103 patients with histopathologically confirmed TNBC across four institutions. The training group comprised 72 cases from the First People's Hospital of Lianyungang, while the validation group included 31 cases from three external centers.

View Article and Find Full Text PDF

ObjectiveTo evaluate the diagnostic performance of a combined model incorporating ultrasound video-based radiomics features and clinical variables for distinguishing between benign and malignant breast lesions.MethodsA total of 346 patients (173 benign and 173 malignant) were retrospectively enrolled. Breast ultrasound videos were acquired and processed using semi-automatic segmentation in 3D Slicer.

View Article and Find Full Text PDF

Purpose: To develop a magnetic resonance imaging (MRI)-based radiomics nomogram to predict lymphovascular space invasion (LVSI) status in patients with early-stage cervical adenocarcinoma (CAC).

Methods: Clinicopathological and MRI data from 310 patients with histopathologically confirmed early-stage CAC were retrospectively analyzed. Patients were divided into training (n = 186) and validation (n = 124) cohorts.

View Article and Find Full Text PDF