98%
921
2 minutes
20
Targeted protein degradation (TPD) facilitates the selective elimination of unwanted and pathological cellular cargoes via the proteasome or the lysosome, ranging from proteins to organelles and pathogens, both within and outside the cell. Currently, there are several in vitro and in vivo protocols that assess the degradative potency of a given degrader towards a myriad of targets, most notably soluble, monomeric oncoproteins. However, there is a clear deficiency of methodologies to assess the degradative potency of heterobifunctional chimeric degraders, especially those in the autophagy space, against pathological, mutant tau species, such as detergent-insoluble oligomers and high-molecular aggregates. The protocol below describes both in vitro and in vivo biochemical assays to induce tau aggregation, as well as to qualitatively and quantitatively measure the degradative potency of a given degrader towards said aggregates, with specific applications of the AUTOTAC (AUTOphagy-TArgeting Chimera) platform provided as an example. A well-defined set of methodologies to assess TPD-mediated degradation of pathological tau species will help expand the scope of the TPD technology to neurodegeneration and other proteinopathies, in both the lab and the clinic. Graphical abstract Description of the biological working mechanism of heterobifunctional chimeric AUTOTAC degraders. Schematic illustration of assays described in this paper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901469 | PMC |
http://dx.doi.org/10.21769/BioProtoc.4594 | DOI Listing |
Chem Biol Drug Des
September 2025
School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.
Molecular hybridization of isoniazid with hydrophobic aromatic moieties represents a promising strategy for the development of novel anti-tubercular therapeutics. In this study, a series of hybrid molecules (5a-i) was synthesized by linking isoniazid with aromatic sulfonate esters via a hydrazone bridge. Molecular docking studies revealed that these compounds interact effectively with the catalytic triad of the InhA enzyme (Y158, F149, and K165), suggesting their potential as InhA inhibitors.
View Article and Find Full Text PDFBioconjug Chem
September 2025
Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki 210-9501, Kanagawa, Japan.
Proteolysis-targeting chimeras (PROTACs) have emerged as a powerful modality for selectively degrading intracellular proteins via the ubiquitin-proteasome system. However, their development is often hindered by the limited availability of high-affinity small-molecule ligands, particularly for challenging targets, such as transcription factors. Aptamers─synthetic oligonucleotides with high affinity and specificity─offer a promising alternative as target-binding modules in the PROTAC design.
View Article and Find Full Text PDFFood Res Int
November 2025
SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China. Electronic address:
Fungal toxin contamination presents significant hazards to agroecosystems and food safety. Penicillium expansum (P. expansum) emerges as a primary threat, damaging sweet cherries through spoilage and generating the hazardous mycotoxin patulin (PAT).
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan. Electronic address:
Dipeptidyl-peptidase (DPP)-IV inhibition by penultimate N-terminus Pro-containing peptides is a promising strategy for Type 2 diabetes (T2D) management, as it prevents the degradation of incretin hormones (DPP-IV substrates) like glucagon-like peptide-1 (GLP-1), thereby prolonging their half-life. However, the stability and bio-accessibility of these peptides are crucial to their efficacy in orally administered therapeutics. We previously identified LPCL and TPFLPDE peptides from tilapia viscera by-products hydrolysates, which exhibited significant DPP-IV inhibition in vitro and in situ while effectively preserving active GLP-1 levels after 2 h treatment in STC-1 cells under basal glucose conditions.
View Article and Find Full Text PDFEur J Pharmacol
September 2025
Departamento de Química and Institute for advanced research in chemical Science (IAdChem), Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The Skp2-Cks1 protein-protein interaction (PPI) within the SCF ubiquitin ligase acts as a co-receptor for phosphorylated CDK inhibitors-most prominently p27-relieving CDK inhibition and advancing the cell cycle, a dependency accentuated in RB-pathway-defective cancers. Crystallographic and cryo-EM analyses delineate a composite pocket formed by the Skp2 leucine-rich-repeat groove and the phosphate-recognition site of Cks1; Cks1-centered open-closed motions further influence druggability. Using HTRF/TR-FRET and AlphaScreen biochemistry, alongside cell-based target-engagement readouts in some studies, three small-molecule classes have emerged that disrupt this PPI: 1,3-diphenyl-pyrazines and triazolo[1,5-a]pyrimidines (lead E35) with low-micromolar potency, and "Skp2E3LI" compounds with micromolar cellular activity.
View Article and Find Full Text PDF