A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Transmission characteristics of vortex frozen waves in different obstacle channels. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The obstacle in a channel is a typical scenario for free-space optical (FSO) communications, however, it will destroy the information in channels, especially for the orbital angular momentum (OAM) multiplexing systems and cause performance degradation. Motivated by the feature of predefining intensity profile, here we propose to use frozen wave (FW) carrying OAM for the FSO communications to mitigate the influence of obstacles on the beam propagation. The key idea is to design the longitudinal intensity profile of FW to distribute the beam energy of the location where the obstacle exists over a large region and focus again on the central region after the obstacle for propagation. By analyzing the cases under different sizes, positions, and shapes of the obstacles with on-axis and off-axis scenarios, it has been demonstrated that the detection probability of OAM mode carried by FW can be improved by 0.35 and 0.15 in short-distance and long-distance transmission scenarios, respectively, when compared to that carried by Bessel-Gaussian beam. It demonstrates the FWs have great potential in the OAM-based FSO communications, especially for the obstacle channels.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.484424DOI Listing

Publication Analysis

Top Keywords

fso communications
12
obstacle channels
8
intensity profile
8
obstacle
5
transmission characteristics
4
characteristics vortex
4
vortex frozen
4
frozen waves
4
waves obstacle
4
channels obstacle
4

Similar Publications