98%
921
2 minutes
20
The recurrence of mass coral bleaching and associated coral mortality in the past few decades have raised questions about the future of coral reef ecosystems. Although coral bleaching is well studied, our understanding of the spatial extent of bleaching events continues to be limited by geographical biases in data collection. To address this gap, we updated a previous observational database and spatially modelled the probability of past bleaching occurrence. First, an existing raw observational database was updated to cover the 1963-2017 period using searches of the academic and grey literature and outreach to coral reef monitoring organizations. Then, in order to provide spatially-explicit global coverage, we employed indicator kriging to spatially model the probability of bleaching occurrence each year from 1985 through 2017 at 0.05° x 0.05° lat-long resolution. The updated raw database has 37,774 observations, including 22,650 positive bleaching reports, three times that in the previous version. The spatial interpolation suggests that 71% of the world's coral reefs likely (>66% probability) experienced bleaching at least once during the 1985 and 2017 period. The mean probability of bleaching across all reefs globally was 29-45% in the most severe bleaching years of 1998, 2005, 2010 and 2016. Modelled bleaching probabilities were positively related with annual maximum Degree Heating Weeks (DHW), a measure of thermal stress, across all years (p<0.001), and in each global bleaching event (p<0.01). In addition, the annual maximum DHW of reef cells that very likely (>90% probability) experienced bleaching increased over time at three times the rate of all reef cells, suggesting a possible increase in reef thermal tolerance. The raw and spatially interpolated databases can be used by other researchers to enhance real-time predictions, calibrate models for future projections, and assess the change in coral reef response to thermal stress over time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925063 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281719 | PLOS |
PLoS One
September 2025
Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
Sea surface temperature of the Red Sea has increased by up to 0.45 °C per decade over the last 30 years, and coral bleaching events are becoming more frequent. A reef bleaching event was observed in October 2020, whereby some parts of the Red Sea experienced more than 12 °C-weeks.
View Article and Find Full Text PDFMol Ecol
September 2025
Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
The class Hexacorallia, encompassing stony corals and sea anemones, plays a critical role in marine ecosystems. Coral bleaching, the disruption of the symbiosis between stony corals and zooxanthellate algae, is driven by seawater warming and further exacerbated by pathogenic microbes. However, how pathogens, especially viruses, contribute to accelerated bleaching remains poorly understood.
View Article and Find Full Text PDFSci Total Environ
August 2025
School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA. Electronic address:
Coral reefs are threatened worldwide from unprecedented increases in ocean temperatures, resulting in corals gradually living closer to their maximum thermal threshold. With ocean temperatures expected to warm up to 3 °C by 2100, understanding the effects of chronic elevated baseline temperature is important in determining the thermal physiological limits of corals and developing realistic restoration strategies to ensure the future of coral reefs. Here, we tested the effects of 26 weeks (i.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico.
The hydrocoral (fire coral) plays a critical role in reef structure and relies on a symbiotic relationship with Symbiodiniaceae algae. Environmental stressors derived from climate change, such as UV radiation and elevated temperatures, disrupt this symbiosis, leading to bleaching and threatening reef survival. To gain insight into the thermal stress response of this reef-building hydrocoral, this study investigates the proteomic response of to bleaching during the 2015-2016 El Niño event.
View Article and Find Full Text PDFMicroorganisms
August 2025
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
Coral reefs are increasingly threatened by global climate change, and mass bleaching and mortality events caused by elevated seawater temperature have led to coral loss worldwide. Hainan Island hosts extensive coral reef ecosystems in China, yet seasonal variation in Symbiodiniaceae communities within this region remains insufficiently understood. We aimed to investigate the temperature-driven adaptability regulation of the symbiotic Symbiodiniaceae community in reef-building corals, focusing on the environmental adaptive changes in its community structure in coral reefs between cold (23.
View Article and Find Full Text PDF