Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To measure the effects of cerebral intermittent theta-burst stimulation with physiotherapy on lower extremity motor recovery in patients with incomplete spinal cord injury.

Design: Randomized, double-blinded, sham-controlled trial.

Subjects: Adults with incomplete spinal cord injury.

Methods: A total of 38 patients with incomplete spinal cord injury were randomized into either an intermittent theta-burst stimulation or a sham group. Both groups participated in physiotherapy 5 times per week for 9 weeks, and cerebral intermittent theta-burst stimulation or sham intermittent theta-burst stimulation was performed daily, immediately before physiotherapy. The primary outcomes were lower extremity motor score (LEMS), root-mean square (RMS), RMS of the quadriceps femoris muscle, walking speed (WS), and stride length (SL). Secondary outcomes comprised Holden Walking Ability Scale (HWAS) and modified Barthel Index (MBI). The outcomes were assessed before the intervention and 9 weeks after the start of the intervention.

Results: Nine weeks of cerebral intermittent theta-burst stimulation with physiotherapy intervention resulted in improved recovery of lower extremity motor recovery in patients with incomplete spinal cord injury. Compared with baseline, the changes in LEMS, WS, SL, RMS, HWAS, and MBI were significant in both groups after intervention. The LEMS, WS, SL, RMS, HWAS, and MBI scores were improved more in the intermittent theta-burst stimulation group than in the sham group.

Conclusion: Cerebral intermittent theta-burst stimulation with physiotherapy promotes lower extremity motor recovery in patients with incomplete spinal cord injury. However, this study included a small sample size and lacked a comparison of the treatment effects of multiple stimulation modes, the further research will be required in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941982PMC
http://dx.doi.org/10.2340/jrm.v55.4375DOI Listing

Publication Analysis

Top Keywords

theta-burst stimulation
32
intermittent theta-burst
28
incomplete spinal
24
spinal cord
24
patients incomplete
20
cord injury
16
cerebral intermittent
16
lower extremity
16
extremity motor
16
stimulation physiotherapy
12

Similar Publications

Predictive and mechanistic biomarkers of treatment response to Transcranial Magnetic Stimulation (TMS) in Psychiatric and Neurocognitive Disorders, identified via TMS-Electroencephalography (EEG) and Resting-State EEG: A systematic review.

J Affect Disord

September 2025

Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada; Seniors Mental Health Program, Department of Psychiatry and Neurosciences, McMaster University, Hamil

Electroencephalography (EEG) is a comparatively inexpensive and non-invasive recording technique of neural activity, making it a valuable tool for biomarker discovery in transcranial magnetic stimulation (TMS). This systematic review aimed to examine mechanistic and predictive biomarkers, identified through TMS-EEG or resting-state EEG, of treatment response to TMS in psychiatric and neurocognitive disorders. Nineteen articles were obtained via Embase, APA PsycInfo, MEDLINE, and manual search; conditions included, unipolar depression (k = 13), Alzheimer's disease (k = 3), bipolar depression (k = 2), and schizophrenia (k = 2).

View Article and Find Full Text PDF

Response to the letter to editor about "Clarifying outcome data for intermittent theta burst stimulation in adolescents: a response to Liu et al.".

J Affect Disord

September 2025

Tianjin Anding Hospital, Tianjin Medical University, 300222, Tianjin, China; Mental Health Center of Tianjin University, Tianjin Anding Hospital, 300072, Tianjin, China. Electronic address:

View Article and Find Full Text PDF

Objective: To identify baseline factors linked to a positive response to intermittent theta-burst stimulation (iTBS) in individuals with stroke.

Design: Secondary analysis of a randomized controlled trial.

Setting: A single rehabilitation hospital.

View Article and Find Full Text PDF

Diverse and distributed haemodynamic effects of theta burst stimulation in the prefrontal cortex.

Neuroimage Rep

September 2025

School of Psychology, Faculty of Medicine and Health, University of Leeds, LS2 9JT, UK.

Background: Theta Burst Stimulation (TBS) is a form of non-invasive brain stimulation that can induce neuroplastic changes in the underlying intracortical areas. It has significant potential in clinical and research settings for modulating cognitive and motor performance. Little is known about how TBS affects oxygenations levels within and across brain hemispheres during stimulation of the Dorsolateral Prefrontal Cortex (DLPFC).

View Article and Find Full Text PDF

We introduce an advanced transcranial ultrasound stimulation (TUS) system for precise deep brain neuromodulation, featuring a 256-element helmet-shaped transducer array (555 kHz), stereotactic positioning, individualised planning, and real-time fMRI monitoring. Experiments demonstrated selective modulation of the lateral geniculate nucleus (LGN) and connected visual cortex regions. Participants showed significantly increased visual cortex activity during concurrent TUS and visual stimulation, with high cross-individual reproducibility.

View Article and Find Full Text PDF