98%
921
2 minutes
20
The accurate assessment of lymph node metastasis (LNM) in patients with early gastric cancer is critical to the selection of the most appropriate surgical treatment. This study aims to develop an optimal LNM prediction model using different methods, including nomogram, Decision Tree, Naive Bayes, and deep learning methods. In this study, we included two independent datasets: the gastrectomy set (n=3158) and the endoscopic submucosal dissection (ESD) set (n=323). The nomogram, Decision Tree, Naive Bayes, and fully convolutional neural networks (FCNN) models were established based on logistic regression analysis of the development set. The predictive power of the LNM prediction models was revealed by time-dependent receiver operating characteristic (ROC) curves and calibration plots. We then used the ESD set as an external cohort to evaluate the models' performance. In the gastrectomy set, multivariate analysis showed that gender (P=0.008), year when diagnosed (2006-2010 year, P=0.265; 2011-2015 year, P=0.001; and 2016-2020 year, P<0.001, respectively), tumor size (2-4 cm, P=0.001; and ≥4 cm, P<0.001, respectively), tumor grade (poorly-moderately, P=0.016; moderately, P<0.001; well-moderately, P<0.001; and well, P<0.001, respectively), vascular invasion (P<0.001), and pT stage (P<0.001) were independent risk factors for LNM in early gastric cancer. The area under the curve (AUC) for the validation set using the nomogram, Decision Tree, Naive Bayes, and FCNN models were 0.78, 0.76, 0.77, and 0.79, respectively. In conclusion, our multi-cohort study systematically investigated different LNM prediction methods for patients with early gastric cancer. These models were validated and shown to be reliable with AUC>0.76 for all. Specifically, the FCNN model showed the most accurate prediction of LNM risks in early gastric cancer patients with AUC=0.79. Based on the FCNN model, patients with LNM rates of >4.77% are strong candidates for gastrectomy rather than ESD surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906085 | PMC |
J Hepatocell Carcinoma
September 2025
Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
Objective: Anoikis is an anchorage-dependent programmed cell death implicated in multiple pathological processes of cancers; however, the prognostic value of anoikis-related genes (ANRGs) in hepatocellular carcinoma (HCC) remains unclear. Our study aims to develop an ANRGs-based prediction model to improve prognostic assessment in HCC patients.
Methods: The RNA-seq profile was performed to estimate the expression of ANRGs in HCC patients.
Front Oncol
August 2025
Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Objective: The retrieval of 12 lymph nodes (LNs) remains a crucial criterion for accurate staging and prognosis evaluation in rectal cancer (RC). However, some patients fail to meet this threshold after surgery. This study developed a nomogram model based on clinical variables to predict the probability of retrieving 12 LNs postoperatively.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
Objective: The risk of lymph node metastasis significantly influences the choice of surgical strategy for patients with early-stage endometrial cancer. While sentinel lymph node dissection can be considered in clinically early-stage endometrial cancer, lymph node evaluation might be omitted in patients with very low risk of lymph node metastasis. This study aims to develop a predicting model for lymph node metastasis in these patients, identifying potential metastases as thoroughly as possible to provide clinicians with a preoperative reference that helps in decisions about surgical procedures and treatments.
View Article and Find Full Text PDFCancer Manag Res
September 2025
The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
Background: Lung cancer brain metastasis (LCBM) accounts for 40-50% of intracranial malignancies, with emerging evidence of alternative metastatic pathways circumventing the blood-brain barrier. Existing prognostic models lack validation in Asian populations and molecular stratification. This multicenter study aimed to develop a clinical nomogram integrating clinicopathological and molecular determinants for personalized LCBM management.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Background: Acute myocardial infarction (AMI) patients with prior malignancy have been largely understudied, despite potentially facing higher risks of adverse outcomes. This case-control study aimed to identify independent risk factors for in-hospital mechanical complications among AMI patients with prior malignancies.
Methods: This study enrolled AMI patients with prior malignancy who were hospitalized for treatment.